The History of Surgical Anesthesia

by Thomas E. Keys
THE HISTORY OF SURGICAL ANESTHESIA

This study of anesthesia history by the late Thomas E. Keys, professor of medical history at the Mayo Clinic, was originally published in 1945. Reprinted with an extended chronology as a Dover Publications paperback in 1963, it was reissued in hard cover by Robert E. Krieger Publications in 1978. A translation into Japanese appeared in 1967 and a translation into German in 1968. Keys' book, now entirely out of print, remains unsurpassed as a compact and perspicuous survey of the development of surgical anesthesia during the hundred years following its birth in 1846. The Wood Library-Museum of Anesthesiology is proud to honor the sesquicentennial anniversary of that nativity with a new facsimile edition of Keys' classic work and gratefully acknowledges the transfer of copyright by Dr. Thomas F. Keys and the gracious help of Dr. Alan D. Sessler.

— B. Raymond Fink
Committee on Publications
"And the Lord God caused a deep sleep
to fall upon Adam, and he slept."

Wood engraving attributed to Michael Wohlgemuth from the Nuremberg Chronicle, 1493.
THE HISTORY OF
SURGICAL ANESTHESIA

by Thomas E. Keys, A.B., M.A.

LIBRARIAN OF THE MAYO CLINIC
Rochester, Minnesota
ASSOCIATE PROFESSOR OF HISTORY OF MEDICINE
Mayo Foundation, Graduate School
University of Minnesota
HONORARY MEMBER
AMERICAN SOCIETY OF ANESTHESIOLOGISTS

With an Introductory Essay
by CHAUNCEY D. LEAKE

A Concluding Chapter
"The Future of Anaesthesia"
by NOEL A. GILLESPIE

And an Appendix
by JOHN F. FULTON

WOOD LIBRARY - MUSEUM
OF ANESTHESIOLOGY
Park Ridge, Illinois
TO

JOHN SILAS LUNDY

WHOSE COUNSEL AND ENCOURAGEMENT MADE THIS BOOK POSSIBLE
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Illustrations</td>
<td>ii</td>
</tr>
<tr>
<td>Preface to the Dover Edition</td>
<td>iii</td>
</tr>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Introductory Essay by Chauncey D. Leake</td>
<td>xiii</td>
</tr>
</tbody>
</table>

I. The Development of Anesthesia

<table>
<thead>
<tr>
<th>Category</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A—The Beginnings</td>
<td>3</td>
</tr>
<tr>
<td>B—From Priestley to Morton</td>
<td>14</td>
</tr>
<tr>
<td>C—The Acceptance of Anesthesia</td>
<td>31</td>
</tr>
<tr>
<td>D—Local, Regional and Spinal Anesthesia</td>
<td>37</td>
</tr>
<tr>
<td>E—Anoci-association; Refrigeration Anesthesia</td>
<td>44</td>
</tr>
<tr>
<td>F—Rectal Anesthesia</td>
<td>45</td>
</tr>
<tr>
<td>G—“Twilight” Sleep</td>
<td>48</td>
</tr>
<tr>
<td>H—Ethylene, Divinyl Oxide, Cyclopropane and Cyprone Ether</td>
<td>49</td>
</tr>
<tr>
<td>I—Intravenous Anesthesia and Related Procedures</td>
<td>53</td>
</tr>
<tr>
<td>J—Endotracheal Anesthesia</td>
<td>63</td>
</tr>
<tr>
<td>K—Carbon Dioxide Absorption</td>
<td>69</td>
</tr>
<tr>
<td>L—Physiologic Factors</td>
<td>71</td>
</tr>
<tr>
<td>M—Pharmacologic Factors</td>
<td>80</td>
</tr>
<tr>
<td>N—Anesthetic Apparatus</td>
<td>83</td>
</tr>
<tr>
<td>O—Records and Statistics</td>
<td>86</td>
</tr>
<tr>
<td>P—Concluding Comments</td>
<td>89</td>
</tr>
<tr>
<td>References for Section I</td>
<td>93</td>
</tr>
</tbody>
</table>

II. A Chronology of Events Relating to Anesthesiology and Allied Subjects

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References for Section I</td>
<td>93</td>
</tr>
</tbody>
</table>

III. Selected References by Subject

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference for Section I</td>
<td>93</td>
</tr>
</tbody>
</table>

IV. Selected References by Author

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference for Section I</td>
<td>93</td>
</tr>
</tbody>
</table>

The Future of Anaesthesia, by Noel A. Gillespie

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference for Section I</td>
<td>93</td>
</tr>
</tbody>
</table>

Appendix by John F. Fulton

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference for Section I</td>
<td>93</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference for Section I</td>
<td>93</td>
</tr>
</tbody>
</table>
List of Illustrations

FRONTISPIECE: Wood engraving from the Nuremberg Chronicle, 1493

FIGURE ON OR FACING PAGE

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Early use of alcohol for anesthetic purposes</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Title page to the first edition of Bullein’s Bulwarke of Defence</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Mesmer practicing animal magnetism</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Hickman experimenting with anesthesia on animals</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>Title page to Humphry Davy’s book</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>Humphry Davy’s “gas machine”</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Title page to Hickman’s pamphlet</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Crawford W. Long</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>Holograph letter by Crawford W. Long</td>
<td>21</td>
</tr>
<tr>
<td>10</td>
<td>Horace Wells</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>William T. G. Morton</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>John C. Warren</td>
<td>26</td>
</tr>
<tr>
<td>13</td>
<td>The first public demonstration of anesthesia with ether</td>
<td>27</td>
</tr>
<tr>
<td>14</td>
<td>John Snow</td>
<td>28</td>
</tr>
<tr>
<td>15</td>
<td>Sir James Young Simpson</td>
<td>29</td>
</tr>
<tr>
<td>16</td>
<td>Title page of transactions of first meeting of the A. M. A.</td>
<td>34</td>
</tr>
<tr>
<td>17</td>
<td>Queen Victoria in 1855</td>
<td>36</td>
</tr>
<tr>
<td>18</td>
<td>Friedrich Wilhelm Sertürner</td>
<td>37</td>
</tr>
<tr>
<td>19</td>
<td>Carl Koller</td>
<td>44</td>
</tr>
<tr>
<td>20</td>
<td>J. Leonard Corning</td>
<td>45</td>
</tr>
<tr>
<td>21</td>
<td>Title page of Pirogoff’s book</td>
<td>46</td>
</tr>
<tr>
<td>22</td>
<td>Rudolph Matas</td>
<td>52</td>
</tr>
<tr>
<td>23</td>
<td>George W. Crile</td>
<td>53</td>
</tr>
<tr>
<td>24</td>
<td>James T. Gwathmey</td>
<td>54</td>
</tr>
<tr>
<td>25</td>
<td>Arno B. Luckhardt</td>
<td>55</td>
</tr>
<tr>
<td>26</td>
<td>Title page to first monograph on intravenous anesthesia</td>
<td>57</td>
</tr>
<tr>
<td>27</td>
<td>Chauncey D. Leake</td>
<td>58</td>
</tr>
<tr>
<td>28</td>
<td>Ralph M. Waters</td>
<td>59</td>
</tr>
<tr>
<td>29</td>
<td>Sir Christopher Wren</td>
<td>60</td>
</tr>
<tr>
<td>30</td>
<td>Richard Lower</td>
<td>61</td>
</tr>
<tr>
<td>31</td>
<td>Initial Q from Vesalius’s Fabrica, 1543</td>
<td>62</td>
</tr>
<tr>
<td>32</td>
<td>Emil Fischer</td>
<td>64</td>
</tr>
<tr>
<td>33</td>
<td>John S. Lundy</td>
<td>65</td>
</tr>
<tr>
<td>34</td>
<td>Original Fell-O’Dwyer apparatus</td>
<td>66</td>
</tr>
<tr>
<td>35</td>
<td>The Matas modification of O’Dwyer’s intubating apparatus</td>
<td>67</td>
</tr>
<tr>
<td>36</td>
<td>Dennis E. Jackson</td>
<td>70</td>
</tr>
<tr>
<td>37</td>
<td>Model of Dennis Jackson’s first anesthetic apparatus</td>
<td>71</td>
</tr>
<tr>
<td>38</td>
<td>Paul Bert</td>
<td>74</td>
</tr>
<tr>
<td>39</td>
<td>Paul Bert’s anesthetic apparatus</td>
<td>75</td>
</tr>
<tr>
<td>40</td>
<td>Arthur E. Guedel</td>
<td>78</td>
</tr>
<tr>
<td>41</td>
<td>Wesley Bourne</td>
<td>79</td>
</tr>
<tr>
<td>42a</td>
<td>and b. Letters from Royal Society of Medicine to Dr. Bourne</td>
<td>80,81</td>
</tr>
<tr>
<td>43a</td>
<td>and b. W.T.G. Morton’s Notice “To Surgeons and Physicians”</td>
<td>177,178</td>
</tr>
</tbody>
</table>
Preface to the Dover Edition

The original edition of this work appeared shortly before the end of World War II. Since that time my interest in the history of anesthesia has continued. In 1954 I was asked by Dr. Rudolf Frey, editor of *Der Anaesthesist*, to prepare an article on historical anesthesia. This gave me an opportunity to review my book, epitomize the subject and rework the field. It also brought to light some minor inaccuracies, which have been corrected along with those mentioned earlier in some of the reviews of my book. In addition, the chronology of events and the sources for the chronology have been extended to 1953, and there have been brief additions to the text, references, and bibliography. A few of the portraits have been replaced with better or more recent likenesses.

In the fall of 1961 I was invited to read a paper on historical anesthesia at the annual meeting of the Japan Pharmaceutical Library Association in Tokyo. In preparing for this lecture I found evidence that a Japanese surgeon, Seishu Hanaoka introduced painless operations under narcosis some time prior to 1835. It does seem reasonable to believe that more facts have been and will be uncovered concerning the history of anesthesia as the older books and manuscripts are read and reread by the scholars interested in the subject. A recent paper by N. H. Keswani suggests that the ancient Hindu literature is replete with references to pain-relieving plants and that concoctions from such plants were administered before painless surgery.

In the original edition of my book (pp. 21-22) it was reported that William Clarke administered ether to a patient prior to a dental extraction by Dr. Elijah Pope in January, 1842. I said that “This would appear to be the first use of ether anesthesia on record.” My source was in a book by Lyman (ref. 23, p. 93). Since then I have found another source for this statement in a
The History of Surgical Anesthesia

book by Hubbell. This author also suggests why Clarke did not continue to use ether as an anesthetic agent:

Another claimant for the early administration of sulphuric ether as an anesthetic, according to Professor Lyman . . . was the late Dr. W. E. Clark, [sic] of Chicago, Ill., who, while a student in Dr. E. M. Moore’s office, Rochester, N.Y., in the winter of 1842, administered ether to a young woman for the extraction of a diseased tooth, which was done with the patient in an unconscious state. Dr. Moore believed, however, that the unconsciousness was hysterical, and advised his pupil to make no more experiments in that direction, and the advice was unfortunately followed.

As my readers are aware, I have always thought, from the study of the evidence, that Morton’s contribution was the most important, and recently, in delving into the literature, I came across a letter from Oliver Wendell Holmes to E. L. Snell giving support to this contention:

Boston, April 2, 1893.

My Dear Sir,—Few persons have or had better reason than myself to assert the claim of Dr. Morton to the introduction of artificial anaesthesia into surgical practice. The discovery was formally introduced to the scientific world in a paper read before the American Academy of Arts and Sciences by Dr. Henry J. Bigelow, one of the first, if not the first, of American surgeons.

On the evening before the reading of the paper containing the announcement of the discovery, Dr. Bigelow called at my office to recite this paper to me. He prefaced it in a few words which could never be forgotten.

He told me that a great discovery had been made, and its genuineness demonstrated at the Massachusetts General Hospital, of which he was one of the surgeons. This was the production of insensibility to pain during surgical operations by the inhalation of a certain vapor (the same afterward shown to be that of sulphuric ether). In a very short time, he said, this discovery will be all over Europe. He had taken a great interest in the alleged discovery, had been present at the first capital operation performed under its influence, and was from the first the adviser and supporter of Dr. W. T. G. Morton, who had induced the surgeons of the hospital to make trial of the means by which he proposed to work this new miracle. The discovery went all over the world like a conflagration.

The only question was whether Morton got advice from Dr. Charles T. Jackson, the chemist, which entitled that gentleman to a share, greater or less, in the merit of the discovery.

Later it was questioned whether he did not owe his first hint to Dr. Horace Wells, of Hartford, which need not be disputed. Both these gentlemen deserve “honourable mention” in connection with the discovery, but I have never a moment hesitated in awarding the essential credit of the great achievement to Dr. Morton.

[iv]
Preface to the Dover Edition

This priceless gift to humanity went forth from the operating-theater of the Massachusetts General Hospital, and the man to whom the world owes it is Dr. William Thomas Green Morton.

Experiments have been made with other substances besides sulphuric ether for the production of anaesthesia. Among them, by far the most important is chloroform, the use of which was introduced by Sir James Y. Simpson. For this and for the employment of anaesthetics in midwifery he should have all due credit; but his attempt to appropriate the glory of making the great and immortal discovery, as revealed in his contribution to the eighth edition of the "Encyclopaedia Britannica," is unworthy of a man in his highly respectable position. In the ninth edition of the same work his article "Chloroform" is omitted and a fair enough account of the discovery is given under the title "Anaesthesia."

Yours very truly,

O. W. Holmes

A sympathetic insight into Morton's high professional attitude toward anesthesia is provided by his Remarks on the Proper Mode of Administering Sulphuric Ether by Inhalation. In this remarkable pamphlet Morton considers (1) the mode of administration, (2) the effects produced, (3) the symptoms of insensibility, (4) the difficulties and dangers, and (5) the best means of obviating and removing these.

As mentioned in the original text (p. 29), the early use of anesthesia developed rapidly in Europe. Ether was given a clinical trial in Paris on December 15, 1846, when Dr. Jobert invited the young American surgeon, F. Willis Fisher, to act as his anesthetist. Fisher had heard about the introduction of anesthesia at the Massachusetts General Hospital in a letter he had received from a medical friend from Boston. This demonstration was unsuccessful. Nothing more was attempted by way of experiments until letters from Drs. Ware and Warren of Boston were published in the French medical journals. This revived interest in ether anesthesia, and on January 12, 1847, Dr. Malgaine reported before the French Academy of Medicine four successful operations performed on patients at the Hôpital St. Louis while they were under the influence of ether. This aroused considerable discussion and the general opinion was expressed that the new discovery was one of great importance.

[v]
The History of Surgical Anesthesia

After many more trials and experiments had been made, some failures and some successes, inhalation anesthesia was gradually adopted in France.

Meanwhile, in England, Dr. Francis Boott⁹ had heard about ether anesthesia from his American colleague Dr. Jacob Bigelow, in a letter from Boston dated November 28, 1846. It was Dr. Bigelow’s son, Dr. Henry Jacob Bigelow, who publicized the first public demonstration of anesthesia by reading a paper on this subject before the Boston Society of Medical Improvement on November 9, 1846. Interestingly enough, he previously had read an abstract of this paper before the American Academy of Arts and Sciences on November 3, 1846.

Dr. Boott, wishing to bring about the successful use of anesthesia in London, organized a demonstration. On December 19, 1846, he arranged for a tooth extraction in his own study while the patient was anesthetized. The patient was a Miss Dondale and the dentist-anesthetist was a Mr. Robinson. The dental surgery, accomplished without the least sense of pain, was highly successful.

As suggested in the first edition of my book, modern rectal anesthesia was attempted shortly after sulfuric ether became available as an anesthetic agent. It is interesting to learn in a recent article by Horine¹⁰ that in the first century A.D., Dioscorides described the anesthetic effects of mandragora by its use in the form of a suppository or rectal injection. The sedative enema is also mentioned in Gerard’s¹¹ Herball, published in 1633.

The development of trichlorethylene as an anesthetic agent should be discussed. In 1935 Cecil Striker,¹² Samuel Goldblatt, I. S. Warm and D. E. Jackson reported on its anesthetic value for operations of short duration in over 300 cases. This agent seems to have been neglected until 1939 when C. Langton Hewer¹³–¹⁸, anesthetist at St. Bartholomew’s Hospital, made his careful investigation. He concluded that purified trichlorethylene was an excellent inhalant drug for producing general analgesia. It was also found to be satisfactory if given in combination with nitrous oxide and oxygen, especially if sparks were present.
He discovered that it should not be used for a profound narcosis and not in a closed circuit apparatus with soda lime.

Joseph T. Clover, the English anesthetist, became interested in nitrous oxide anesthesia in 1868. He discovered that chloroform apparatus was equally well adapted to the administration of nitrous oxide. He noticed in a few cases, however, some unsatisfactory results. Reasoning that this was due to the gas not being able to travel quickly enough along the tube during the forced motions of respiration, Clover invented a supplementary re-breathing bag which allowed for the re-breathing of a portion of the gas.

Another British pioneer in the development of nitrous oxide anesthesia was Alfred Coleman (1828-1902), a dental surgeon. Apparently he was the first to devise a carbon dioxide absorber to be used clinically. The expired gas was passed over slaked lime contained in a gas tube before returning to the bag again.

Since the appearance of the original edition two of the contributors have died, Dr. Noel Gillespie (1904-1955), who wrote the concluding chapter, and Dr. John F. Fulton (1899-1960), who prepared the appendix. Many others mentioned in the text have also died. These include: Dr. Richard C. Adams (1906-1956), Dr. Walter M. Boothby (1880-1953), Dr. Howard Dittrick (1877-1954), Dr. Arthur E. Guedel (1883-1956), Dr. Arno B. Luckhardt (1885-1957), Dr. Rudolph Matas (1860-1957), Dr. Albert H. Miller (1872-1959), Dr. Emery A. Rovenstine (1895-1960), Dr. Henry S. Ruth (1899-1956), Dr. Brian C. Sword (1899-1956), and Dr. Edward B. Tuohy (1908-1959). There are probably many others that I have not heard about.

I consider it a great compliment that this book now appears in a paperback edition and I wish to thank Mr. Hayward Cirker, President of Dover Publications, for making this possible.

THOMAS E. KEYS

Rochester, Minnesota

November, 1962

[vii]
References for Preface to the Dover Edition

Preface

This book had its beginning by way of a chance conversation with Dr. John S. Lundy, Chief of the Section on Anesthesia, Mayo Clinic. I asked Dr. Lundy if he was planning to include any historical material in his new book on anesthesia. Dr. Lundy said that he was and asked for my advice. We decided after considering different proposals that the most practical thing to do was to make a chronologic table. This was done and the table appeared in Lundy’s Clinical Anesthesia (Saunders, 1942) as chapter 29, pp. 705-717.

In the preparation of the chronology, I had gathered together a considerable number of notes. On the invitation of Dr. Henry Ruth, the editor of Anesthesiology, I rewrote my notes into a series of five papers, which were published in Anesthesiology under the title “The Development of Anesthesia” as follows: 2:552-574 (Sept.) 1941; 3:11-23 (Jan.), 282-294 (May), 650-658 (Nov.) 1942 and 4:409-429 (July) 1943. A collected reprint was made incorporating these five articles and distributed to those interested. My bibliographic friends chided me a bit, for the source of the collected reprint was not given on either the cover or the title page. This was, to be sure, an oversight but had these same bibliographic friends bothered to read this reprint, they could have found in the first line of my “concluding comments” the sources given as numbered bibliographic references.

Before I had a chance to finish these papers the war broke out. I wrote the final two articles in spare evenings as a member of the Armed Forces, first in Washington, D. C., where I was assigned as assistant to the Librarian, Army Medical Library, and secondly in Cleveland, Ohio, where I was appointed Officer in Charge of the Cleveland Branch, Army Medical Library.

In Cleveland it was my good fortune to meet Dr. Howard Dittrick, the editor of Current Researches in Anesthesia and Analgesia. Dr. Dittrick asked me for a contribution to Current Researches.
The History of Surgical Anesthesia

I decided that a selected list of important references arranged by subject might be desired. This met with his approval and was published in two installments.

Meanwhile I had been urged by a few of my friends to make this contribution of a more permanent character; especially my good friend Chauncey Leake urged me to build it into a book. He wrote a letter to Henry Schuman advising this. Mr. Schuman offered publication. This offer was accepted and it was decided to include a revision of the five essays, a revision of the chronology and a selected list of references arranged by author and subject. Acknowledgment is hereby made to the W. B. Saunders Co., Anesthesiology and Current Researches in Anesthesia and Analgesia for permission to use the material referred to previously. I am indebted again to Anesthesiology for the use of the cuts which appeared in the original essays.

I am indebted to a considerable number of persons for their help and encouragement in this project. I especially wish to thank Dr. Lundy and his staff for their complete co-operation and for their many helpful suggestions. To my other friends in the field of anesthesiology and especially to Dr. Leake for his unfailing generosity in writing the introduction and for his boundless enthusiasm, to Drs. Ralph Waters and Noel Gillespie for their critical analysis of the book in its early stages and again to Dr. Gillespie for the concluding chapter I express my appreciation. It will be noted that Dr. Gillespie prefers the spelling "anaesthesia" which has therefore been used in his chapter. Dr. John F. Fulton has kindly consented to publish his bibliographic study of the Letheon tracts as an appendix. To Dr. Fulton and to Madeline Stanton, who assisted him, I wish to convey my appreciation.

Since the publication of the original essays it is with saddened heart that I bring to the attention of my readers the deaths of some of anesthesia's most profound contributors: Karl Albert Connell on October 18, 1941, at the age of sixty-three years; George Washington Crile on January 7, 1943, at the age of seventy-eight; James Tayloe Gwathmey on February 11, 1944,
Preface

at the age of eighty; and Carl Koller on March 22, 1944, at the age of eighty-six. It is hoped that their contributions have received adequate attention within these pages.

A book of this nature necessitates a good deal of bibliographic research. I have seen as my responsibility not only the correcting of many of the errors that have crept into the history of anesthesia but also on the basis of historiography to try to present with an unbiased judgment the main contributions. This building of a synthesis is not easy and there are probably important omissions. Won’t my readers please advise me of them and of other ways to improve this book?

My appreciation is extended to my library colleagues for their help in supplying source materials. Thanks are especially due to Catherine Kennedy and others of the Mayo Clinic Library, Jens Christian Bay of the John Crerar Library, James Francis Ballard of the Boston Medical Library, Colonel Harold Wellington Jones of the Army Medical Library, Washington, D. C., and Max Harold Fisch and Dorothy May Schullian of the Cleveland Branch of the Army Medical Library. Drs. Fisch and Schullian also translated many passages from the Latin.

My appreciation is likewise extended to Dr. Robert M. Stecher and Miss Ada Floyd of the Cleveland Medical Library Association for their many courtesies. Let every historian of medicine pay tribute to the possessors of the early original volumes of the Philosophical Transactions of the Royal Society, so full of important data. I believe I was one of the first to use these volumes recently acquired and a prize possession of the Cleveland Medical Library Association.

Finally I wish to express my warm thanks to Dr. and Mrs. Logan Clendening* of Kansas City. Dr. Clendening’s library, one of the well known historical collections, includes a vast array of important materials on the history of anesthesia, especially the American contributions. I had the pleasure last October of spending a few days with the Clendenings and their splendid library and I learned many things. A short title list of Dr. Clendening’s

*This paragraph was written shortly before Dr. Clendening’s death on January 31, 1945.
The History of Surgical Anesthesia

library on anesthesia was published in the Bulletin of the Medical Library Association for January, 1945.

During the preparation of the manuscript, it was necessary to correspond with many persons. To them I express my indebtedness for their splendid co-operation.

For the advice and encouragement I received from the Division of Publications of the Mayo Clinic, for the preliminary editing by James Eckman, now Captain Eckman, and to Dr. John R. Miner, who was responsible for the editing of the revised version, I express my gratitude.

And to Henry Schuman for his painstaking advice about all the publisher’s details, for his encouraging confidence that the materials now brought together and revised will meet a genuine need; and to A. Colish for producing a book of such tasteful design and quality in these difficult times.

Thomas E. Keys

[xii]
Introductory Essay

In the midst of the closing anguish of our tentative (and may it be our last!) experiment with total war, it is fitting to reflect a bit upon the practical and specific achievement of the past hundred years on the relief of physical pain. For these fateful forties of the twentieth century are the centennial of the first successful efforts in the solution of the problem of surgical anesthesia in the fabled forties of the nineteenth. May the next hundred years be as successful in affording a capacity for relief of mental suffering!

Control of pain incident to surgical operation was a pressing problem for centuries. While alcoholic concoctions must early have been used, following recognition of their stupefying effects, they were not successful because of the delirium they produced. Pressure was used on nerves or blood vessels, as by the early Egyptian surgeons, in order to cause insensibility in the part to be operated upon. Attempts seem even to have been made by Græco-Roman surgeons to produce what we now call carbon dioxide, to bring sleep by inhalation. Amazingly, the early Inca shamans seem to have observed and utilized in trephining the pain-relieving properties of extracts of coca leaves, made by chewing the leaves and allowing the saliva to drop upon the bashed-in area on the skull to be excised. When one thinks that many of these primitive surgeons used flint knives, one appreciates what effort must have been made to get relief from the accompanying pain!

With more knowledge, concoctions of mandragora and opium had to suffice European surgeons until the development of modern chemistry made possible the study of the effects of pure chemical agents. Of course, shock in the patient may have helped also to relieve pain. Perhaps the most important factor in the success of the pre-anesthesia surgeon was his sleight-of-hand dexterity. It is astonishing that surgery continued to be practiced at all in the face of the patient’s painful struggle without anesthesia, and the almost certain fatal termination without asepsis.
Remarkable is the fact that so many chemical agents with anesthetic properties were known and their pain relieving actions recognized long before they were practically applied in surgical anesthesia. Ether was described about 1540 by that remarkable genius, Valerius Cordus (1515-1544). It was not effectively used for anesthesia until centuries later, although there is indication that its “sleep producing” properties were known about the time of its discovery. Ether was even included in early nineteenth century pharmacopeias, but not for anesthesia. Nitrous oxide was recognized by the young Humphry Davy (1778-1829) in 1800 as being suitable for pain relief in surgical operation, but was not utilized until forty-four years later. How many of the hundreds of thousands of compounds in Beilstein may have important medicinal uses, if only pharmacologists can be given the opportunity systematically to explore them!

It is not merely a matter of chance that the problem of surgical anesthesia should have been solved in a practical way by the eminently hard-headed Americans, as soon as an inkling of available means became known to them. A century ago, this country was still a rapidly expanding pioneer state. People were too busy to be bothered with the finer medical skills. The chief problem in medical practice was surgical. In spite of the rough and ready individualism of the frontier nation, there was an underlying current of rich sympathy and sentiment for suffering humanity. Surgeons were on the watch for something that would relieve the pain that made their operative procedures so difficult.

Both the physician, Crawford W. Long (1815-1878) in Georgia, and the dentist, Horace Wells (1815-1848) in Connecticut, appreciated the practical applications in surgery of casual observations of the effects of ether and nitrous oxide respectively. Long at a backwoods “ether frolic,” and Wells watching the effects of “laughing gas” in an itinerant chemist show. The matter was so pressing that in spite of Wells’ tragic failure with nitrous oxide before the surgeons of the Massachusetts General Hospital, his former dental partner, W. T. G. Morton (1819-1868), was sufficiently stimulated to start systematic study and
experimentation. It was Morton's persistence in working out a practical technic for the administration of ether that made satisfactory anesthesia possible. A similar practical persistence has been displayed in this country in the development of sulfa drugs, antibiotics, vitamins, barbital derivatives, and local anesthetics.

Almost exactly paralleling the development of modern chemistry and pharmacology in the last century, anesthesia has become a highly complex special field of scientific investigation in the practical application of medicine. Thousands of chemical agents are now available for the relief of pain. Many complicated technical procedures of administration of anesthetics have been proposed and utilized. The successful application of the vast knowledge which has accumulated in the field requires broad appreciation of physiological principles, biochemical reactions, modifications induced by pathology, anatomical considerations, appreciation of the objectives of the surgeon, and even profound skill and insight with regard to psychological and neuropsychiatric factors. The modern professional anesthesiologist is indeed a highly trained medical specialist.

WHAT ARE PAIN AND ANESTHESIA?

Yet anesthesia remains primarily an empirical development. Our ignorance of pain is still appalling. Yet pain is the basic factor with which anesthesia is concerned. We recognize the molecular disturbances in nerves and brain, interpreted by our conditioning as "pain," to be adaptations conducive toward survival. But even in this fundamental concept we are baffled by the perversities of some individuals who seemingly enjoy and welcome pain! We know that the sensation of pain is greatly altered by mental states. Anatomists and physiologists have been able to trace the pathways for pain and have succeeded in demonstrating many of the factors which alter conduction and perception of pain. But we still do not know what pain is!

The extent of a generation's progress in approaching the concept of pain may be judged by comparing two interesting volumes having this same title. The earlier is R. J. Behan's Pain:
The History of Surgical Anesthesia

It is interesting that in the generation between Behan's Pain and the 1943 collaborative effort on the same subject, the ancient metaphysical concepts regarding pain should finally have been sloughed by medical scientists. Behan in 1914 still considers these concepts in discussing pain. In 1943 they have vanished into the thin air from which they apparently came. It is amazing, however, how semantic difficulties persist. Pain is still frequently thought to be the antithesis of pleasure, whatever that is. While anesthesia relieves pain, it can hardly be thought of as a pleasure!

Recent investigations, particularly by Nobelates Joseph Erlanger and Herbert Gasser, have demonstrated that painful sensations are carried by slow conduction in fibers of what are called the "C" group, and rapidly by "A" fibers. It has been shown that summation of painful stimuli does not occur, since as an area exposed to a painful stimulus is increased, the pain threshold is not lowered (J. D. Hardy, H. G. Wolff, and H. Goodell, Studies on Pain: A New Method for Measuring Pain Threshold: Observations on Spatial Summation of Pain, Journ. Clin. Investig., 19:649, 1940). Thus it may be inferred that the intensity of pain is determined by the frequency of conduction. While it is this intensity which determines the amount of an anesthetic or analgesic necessary to use, it is agreed that the emotional state of the individual profoundly alters the threshold to pain.
Introductory Essay

Morphine, alcohol, and the barbiturates may act as analgesics by blocking synapses, thus producing disorientation with dissociation of pain perception from the usual pattern of reaction to pain. Aspirin and chemically related antipyretics may act in a similar manner in part, but they also have a significant effect in altering permeability patterns of cells so that pain resulting from swelling of tissues within a rigidly enclosed case may be relieved by their effect in withdrawing fluids from the congested area. The general inhalation anesthetics such as ether and chloroform apparently break association pathways in the cerebral cortex so as to produce complete lack of sensory perception and of motor discharge. The local anesthetic agents apparently act by disturbing cellular permeability locally at the point of application by blocking acetylcholine metabolism in such a manner that energy transfer and conduction of impulses are no longer possible.

While the generally acting anesthetic and analgesic agents may alter synaptic connections between nerve fibers, as well as produce disturbances of enzymatic energy metabolism within the cells, local anesthetics seem to act chiefly at the point of application by virtue of preventing the passage of the nerve impulse, through inhibition of enzyme chain reactions.

In a patient under the influence of a general anesthetic agent it is probable that painful stimuli continue to bombard the cerebral cortex, from the area where trauma in tissues is going forward. On the basis that this continual bombardment during operations might cause energy changes harmful to the individual and initiate the reflexes called "shock," the late Cleveland surgeon, Dr. G. W. Crile, proposed what he called "anoci-association." This is simply a combination of local and general anesthesia. The idea is to use local anesthetic agents to block painful stimuli from the operative area from reaching the brain, and to use a general anesthetic to obtain relaxation and general insensibility on the part of the patient.

In spite of voluminous discussion and vast experimentation on pain, however, we still possess little knowledge which enables us to approach the problem of its control by rational means with-
The History of Surgical Anesthesia

out recourse to simple trial-and-miss experimentation. Many brilliant hypotheses on the mechanism of anesthesia have been proposed by such experimentalists as Claude Bernard (reversible protein coagulation), H. H. Meyer and C. E. Overton (lipoid solubility), R. DuBois (dehydration), H. Winterstein (asphyxia), J. Traube (capillary activity), O. Warburg (adsorption), and R. Hober and R. Lillie (surface tension and membrane permeability). As V. E. Henderson concludes (Physiol. Rev., 10:171, 1930), we do not know how to explain anesthesia.

On the other hand, from such experimentation with specific chemical agents, we have learned the types of chemicals which block either the conduction or the perception and sensation of pain. Frequently we are able to modify such chemical agents to produce greater or less degrees of central nervous system depression, or to alter side effects incident to their use in blocking a nerve pathway. We strive continually to find new chemicals which will produce the desired anesthetic effect with least disturbance of other physiological activities of the organism, and of course with least possibility of any conceivable harmful effects.

Indeed, our knowledge of the relationships between chemical constitution and biological action with respect to anesthetics is now so well advanced that we can almost devise chemicals to specification for specific anesthetic purposes. This probability was what so intrigued me in developing divinyl oxide ("vinethene"). Dr. Clarence Muehlberger, with whom I first discussed the matter, agreed that we had biochemorphic knowledge enough to predict what the general biological properties of the then unknown chemical compound, divinyl oxide, would be.

However, we are still a long way from understanding how these anesthetic chemicals accomplish the purposes for which we use them. We comprehend dimly how certain physical factors such as cold may reduce metabolism of nerves and interfere with conduction of pain, but we still don’t know why cold itself is painful. We remain wholly in the dark as to how altered mental states can modify the sensation or perception of pain. Of the
energy transformations concerned we can but vaguely surmise, but we can believe that they are fundamental.

Before the deep barrier of these great mysteries we can only stand humbly thankful that we are able to accomplish as much as we can in the relief of pain. The success of the past hundred years in the acquisition of knowledge with which to improve our ability to control pain, may serve as a continued stimulus to us to keep the snowball rolling during the next hundred years. If our proportionate success is as great, then we are on the brink of awe-inspiring discoveries.

ANESTHESIA COLLECTIONS

The exciting human story of the development of surgical anesthesia is sympathetically related by Thomas E. Keys. As reference librarian for the Mayo Clinic, Mr. Keys first prepared the material comprising this volume in a series of papers appearing in *Anesthesiology*. The interest and enthusiasm with which these sketches were received suggested that it would be well worth while as a contribution to the centennial of anesthesia to revise them and publish them in book form. This has been undertaken with the characteristic enthusiasm of Henry Schuman for all things historical in medicine. Meanwhile, Mr. Keys has become a Major attached to the medical work of the Army. He is assigned to the Cleveland Branch of the Army Medical Library. Here Major Keys has a rare opportunity to indulge his passion for the history of medicine.

Major Keys' keen historical sense is reflected in the affectionate care he is bestowing upon the great medical treasures entrusted to his safekeeping. Although medical men generally have intense pride in the Army Medical Library, and although they think that it is the finest repository of medical books in the world, they have been content more or less to let it go at that. The result has been that there have occurred considerable deterioration and neglect, through failure to provide sufficient funds for proper maintenance and expansion. In the present quarters of the Cleveland Medical Library Association, the rare historical
The History of Surgical Anesthesia

collections of the Army Medical Library are now splendidly housed and are receiving the finest kind of attention. These collections of course include a vast amount of original material relating to the development of anesthesia. Major Keys has made ample use of these in the preparation of his monograph.

There are many admirable collections relating to anesthesia in this country. The most significant is that preserved with the "Ether Room," the old operating amphitheater at the Massachusetts General Hospital, where Horace Wells' fiasco with nitrous oxide occurred a century ago, and where W. T. G. Morton, who witnessed the tragedy as a medical student, later demonstrated real anesthesia with ether.

Among the more extensive collections is that brought together by the late Dr. Logan Clendening in Kansas City, Kansas. Sir William Osler had given great stimulus to the collecting of original anesthesia items (Ann. Med. Hist., 1:329, 1917). His library at McGill, under the direction of Dr. W. W. Francis, has many fine items. A large collection of American anesthesia literature has recently been acquired by Dr. Josiah C. Trent of Durham, North Carolina. Dr. Lawrence Reynolds of Detroit has built up a splendid anesthesia collection. It is especially rich in European literature. Dr. Emmet Field Horine of Louisville, Kentucky, has also collected in this field. Dr. Harry Archer of the University of Pittsburgh School of Dentistry has developed the best collection relating to the work of Horace Wells. As might be expected, Dr. Arno B. Luckhardt in Chicago possesses a noteworthy group of anesthesia items. The best Priestley material was assembled by the late Edgar Fahs Smith at the University of Pennsylvania. The Historical Library of Yale Medical School under the direction of Dr. John F. Fulton has assembled one of the country's outstanding collections.

The Crummer Room of the University of California Medical Center in San Francisco shelters particularly fine original manuscript and association items relating to all phases of anesthesia. Dr. Ralph Waters of the University of Wisconsin has also developed an admirable historical anesthesia collection under the
Introductory Essay

inspiration of the late Dr. William Snow Miller. The Frank McMechans labored heroically to afford appreciation of the romantic interest and history of anesthesia, and their efforts are being worthily maintained by Dr. Howard Dittrick in Cleveland. One of the best collections abroad on the history of anesthesia was brought together at the Radcliffe Infirmary in Oxford by Dr. R. R. MacIntosh.

It would be helpful to keep careful records of current advances in anesthesia. The original documents should be preserved and added to these special collections. At the Mayo Clinic, the brilliant work of Dr. John S. Lundy and his associates in developing effective intravenous anesthesia is properly appreciated with respect to its historical significance, and the important documents relating to this development are being preserved carefully. Under the stimulus of Dr. Paul M. Wood, the American Society of Anesthetists is promoting an important repository for historical material relating to anesthesia, at its New York office.

Personal reminiscences and correspondence relating to current developments in anesthesia deserve to be preserved. What precious anesthesia lore, for example, is to be found in the vigorous correspondence maintained for so many years between Dr. Arthur Guedel in Los Angeles and Dr. Ralph Waters in Madison! The volumes of letters of the “Water Babies” must hold many valuable suggestions and ideas in anesthesia.

PERSONAL NOTES ABOUT ANESTHESIOLOGY

These reflections suggest that indulgence might be extended toward me in such personal reminiscences as might seem to be related to recent developments in anesthesia. It has been my privilege to participate in many of these, with respect both to local and to general anesthesia, during the past quarter century.

My earliest contact with great contributors to the history of anesthesia was one which I did not appreciate at the time. I grew

[xxi]
up in Elizabeth, New Jersey, and when I was about ten years old, I seemed to be having some difficulty in reading and seeing. Ophthalmology was then a new specialty in this country, and a number of smart young men were claiming to be specialists in this field. My mother took me to the local eye specialist and he told her that I was going blind. For $5 a week he would take care of me. This was a little too much for the family budget, so our family physician, Dr. Paul Mravlag, a Viennese who was mayor of the city, was consulted. He told my mother to take me to a real ophthalmologist whose office was on Madison Avenue in New York.

It was quite an experience for me. There was first the exciting trip to New York, then the wait in the crowded reception room, and then the short but very impressive examination in the dark room. The verdict was simply that I had astigmatism and nearsightedness. A prescription was given to me which was signed by Carl Koller.

Some twenty years later, after I had learned who Carl Koller was, I had the pleasure of returning to his office on East 59th Street to have my twenty-year-old prescription renewed. At that time, he told me much of his early associations with Sigmund Freud in Vienna, and how he had been induced to study cocaine as a possible antagonist to morphine, with the idea in mind of treating morphine addiction. Dr. Koller confided to me that he really wasn't interested in this problem at all, since he wanted to be an ophthalmologist. He said he was searching for something which he could put in the eye to anesthetize it for operations for cataract. As soon as he tasted cocaine, he said he realized the numbing effect was due to a blocking of sensation and that it might be what he was looking for.

On my persuasion, Dr. Koller wrote a full account of his part in the development of cocaine as the first efficient local anesthetic, and this I abstracted for publication in 1925 with his picture. A few years later some of us were instrumental in having him elected an Honorary Member of the American Society for Pharmacology and Experimental Therapeutics.

[xxii]
Introductory Essay

In 1934, the Semi-Centennial of the first use of cocaine as a local anesthetic, the Federated Societies for Experimental Medicine met at the Hotel Pennsylvania in New York. I tried hard to persuade Dr. Koller to come to the annual banquet. However, he refused because of ill health. I tried to get several popular magazines, and also the newspapers, to write some account of Dr. Koller on this occasion. It struck me as being very remarkable that the man who had contributed more than any other man then alive to the relief of human pain and suffering, should be right there in New York. It struck me also as being very remarkable that no one seemed to think that this was a very interesting or significant matter. Such are the rewards for service to humanity!

In the pharmacology laboratory of Professor A. S. Loevenhart at the University of Wisconsin, where I later worked, there was much interest in local anesthesia. In a survey of alkyl analogues of procaine, it was shown that the isopropyl derivative was probably more efficient, since it will anesthetize the intact mucous membrane, and without any increase in possible toxicity. However, since there were no patent rights involved, no commercial manufacturer seemed to be interested in developing the agent. On the other hand, one of the series which could be patented, but which was shown to be quite toxic, was widely exploited. It was in this famous laboratory that Dr. Arthur Tatum, Dr. P. K. Knoefel, and Dr. Loevenhart showed that the barbitals antagonized the toxicity of local anesthetics and that they are highly advantageous to use as a pre-anesthetic medication before the administration of a local anesthetic.

When I was a student at Princeton, I was preparing to go to medical school. However, I got sidetracked into philosophy and psychology, and then thought that I might study psychiatry. However, Andrew Fleming West, Dean of the Graduate School, threw a lot of cold water on this idea. This is probably one of the reasons why I subsequently took much interest in Woodrow Wilson! I left Princeton in March, 1917, when I was a senior, to go off with the National Guard unit to which I belonged. We
The History of Surgical Anesthesia

were in the Twenty-Ninth Division and trained in Anniston, Alabama. However, I was transferred before the Division went overseas, to the Chemical Warfare Service, and was presently assigned to the Medical Defense Division under Dr. Walter J. Meek and Dr. J. A. E. Eyster at the University of Wisconsin. Our work on war gases necessitated the use of morphine to prevent pain in the animals we were employing. Accordingly, it was necessary to study the effects of morphine as a control on the observations we were making. When I was mustered out at the end of the war, I was generously offered the opportunity to continue with these studies.

The action of morphine has always had a peculiar fascination for pharmacologists. An immense amount of empirical information is available, but we still have little idea regarding its mode of action. From my studies it seemed to me that many of its actions are analogous to the effects of interference with oxidative processes in the body.

The effects of reduced oxygen fixation in the cells of the body had been a major project in Dr. Loevenhart's pharmacology laboratory at Wisconsin for many years. An outstanding contribution had been made by Dr. Herbert Gasser and Dr. Loevenhart on "The Mechanism of Stimulation of the Medullary Centers by Increased Oxidation" (J. Pharmacol. Exp. Therap., 5: 239-273, 1914). And Dr. Loevenhart had summarized many of his ideas on the matter in a Harvey Society lecture ("Certain Aspects of Biological Oxidation," Arch. Intern. Med., 15:1059-1071, 1915). It seemed to me that the actions of morphine could be explained on the basis of an interference with intracellular oxidative processes. While there was not much knowledge available at the time regarding the complex enzyme systems involved in intracellular oxidation, I nevertheless expressed the view that morphine exerts its effects by blocking oxidative enzyme systems. Detailed discussions with my superiors on the dangers of reasoning by analogy in scientific work inhibited me sufficiently so that these ideas were not published!

Meanwhile, I became interested in some of the effects of gen-
eral anesthesia. Dr. A. E. Koehler, my wife and myself studied the effects of inhalation anesthetic agents on blood reaction. It seemed to us that the net effect was the development of a transitory diabetes. It looked again as though the general anesthetic agents interfere with intracellular enzyme systems associated with oxidation, so that the intermediate toxic products of cellular oxidation accumulate. We showed that there is a significant ketosis with ether anesthesia. Our observations on morphine and ether were interpreted quite differently from the explanation given by Dr. Yandell Henderson at Yale. However, we avoided a direct controversy, although some snappy letters passed between us.

The dramatic introduction of ethylene anesthesia by Dr. Arno Luckhardt in Chicago and its careful study by Dr. V. E. Henderson in Toronto stimulated us to study its effects on the blood reaction in comparison with nitrous oxide and other inhalation anesthetics. We obtained further evidence that blood reaction effects may be correlated with the extent of interference with oxidation.

Meanwhile, my interest had been aroused by Dr. Loevenhart and his associates on the possible relationship between chemical constitution and biological action. This had been rather extensively studied in the laboratory in relation to arsenical compounds in the chemotherapy of syphilis. It had also been involved in the study of local anesthetics. Our studies on ether and ethylene suggested that it might be of interest to determine whether or not the characteristic unsaturated carbon atom of ethylene would improve the anesthetic properties of ether if it were a part of the ether molecule. In discussing this matter with Dr. Clarence Muehlberger, we came to the conclusion that it would be worth while to obtain divinyl ether for study.

Accordingly, after failing to arouse interest among our organic chemist colleagues, I wrote to Dr. Lauder Jones, Professor of Organic Chemistry at Princeton, suggesting the problem. He asked his graduate student, Dr. Randolph Major, to undertake the synthesis of the new agent. While it had been tentatively
The History of Surgical Anesthesia

described as having been isolated from a species of Allium, by Semmler, in 1885, it had never been synthesized nor was it certain that it had actually been isolated.

The problem of the synthesis was difficult, but eventually impure samples were obtained. Meanwhile, I had gone to San Francisco to organize the Pharmacology Laboratory of the University of California Medical School. While there, I met Dr. Sigmund Fraenkel, who was working in Dr. Herbert Evans' laboratory in Berkeley. Dr. Fraenkel was unable to synthesize divinyl ether, but he did obtain samples of other unsaturated ethers which he sent to us for study.

When the new Laboratory was organized, Dr. P. K. Knoefel came as a National Research Council Fellow, having completed his medical studies at Harvard. While at the International Physiology Congress in Boston, I met a brilliant young Chinese girl who had been born in San Francisco and wanted to come back there to work before returning to China. She was the daughter of the Minister of Education in Sun Yat Sen's Cabinet, and had studied in London. Miss Mei-yu Chen, Dr. Knoefel and myself undertook the survey of the unsaturated ethers.

By applying principles discovered by Benjamin Ward Richardson, we could predict that divinyl ether would be the most satisfactory of the unsaturated ethers for inhalation anesthesia. Experimental studies verified this prediction. Randolph Major and his associate, R. L. Ruigh, had now left Princeton to organize a research effort for Merck & Company at Rahway, New Jersey. They improved upon the method of preparing divinyl ether and worked out a procedure for stabilizing it. The product was called "Vinethene" and a patent was obtained for it. This annoyed me quite a bit, but there wasn't much I could do about it!

Meanwhile, our first reports had excited a number of scientists. Dr. Samuel Gelfan in Canada asked for the privilege of studying the effect of divinyl ether on human beings. I arranged for samples to be sent to him and for his publication to appear with the extended pharmacological report which we made. In
Introductory Essay

this we attempted to cover as carefully as we could all factors of significance in the pharmacological appraisal of the new anesthetic agent. We had previously established ideal standards for the introduction of new drugs, and we were trying to live up to our own pronouncements!

My colleagues at the University of California Medical Center in San Francisco were not particularly impressed with our studies. We had demonstrations in the laboratory and there was courteous interest, but this was tempered by proper professional caution. Although the first surgical anesthesia with divinyl ether was carried out in the University of California Hospital under the direction of Dr. Dorothy Wood, the agent was not further used. Its clinical use was thoroughly studied at the instigation of the Merck Laboratories by Dr. I. S. Ravdin, Professor of Surgery at the University of Pennsylvania, and his associates. My mentors at the University of Wisconsin simply couldn’t do anything with divinyl ether. It amused us to realize that they couldn’t even anesthetize animals with it! Nevertheless, they appreciated its anesthetic power as demonstrated in a dramatic incident at a meeting in Milwaukee.

Meanwhile, Merck & Company established a fellowship in our laboratory for a systematic study of the various types of hydrocarbons as possible anesthetic agents. We had many long and interesting debates over details of technics. Dr. S. Anderson Peoples became interested in attempting mathematical treatment of concentration time relations. Certainly the problem became complicated. Dr. David Marsh reported in a systematic way on an extensive series of hydrocarbons, many of which he synthesized for the first time. The results showed that it was not likely that more practical inhalation anesthetic agents could be obtained than those already well known. We extended the series to include halogenated hydrocarbons in order to attempt to get an agent which would be practically useful but not inflammable or explosive. The study deserves careful consideration, but unfortunately is not yet published. It is doubtful, however, if anything practically significant will come from it.

[xxvii]
Meanwhile, much to our chagrin, clinicians were discovering that divinyl ether is potent and, in fact, dangerous if its administration is pushed too hard or too long. Evidence of liver injury occurred, and we were all much concerned. Finally, however, its general place in short anesthesias had become established, and our interest turned to other matters.

We held many vigorous discussions on anesthesia with Dr. Arthur E. Guedel of Los Angeles and some of his associates, who would join our summer vacationing group in cool San Francisco. Often these arguments would be conducted at “Pharmaglen,” a sheltered little redwood grove in the Santa Cruz Mountains along the San Lorenzo River, about sixty miles south of San Francisco. Some half-dozen cars would take twenty or thirty of us down the winding Skyline Boulevard through forest and meadow overlooking ocean and bay. We usually went for a Sunday picnic, and we would spend the day discussing factors concerned in stimulation and depression of the central nervous system, with blackboard nailed to redwood trunk.

From these discussions developed a study of the chemical adjuncts to anesthesia. We investigated the metabolic depressant action of morphine in comparison with barbitals. Dr. Hamilton Anderson took charge of most of this work. We were much inspired in our discussions by the brilliance of Dr. Gordon Alles of Los Angeles in developing benzedrine, the central stimulating action of which was so well demonstrated clinically by Dr. Anderson Peoples while in London.

These considerations led us to revise the terminology of anesthesia. We believe that much confusion in thought is caused by the traditional habit of terming the second stage of anesthesia the stage of “excitement.” It is much more appropriate to refer to it as “delirium,” and to reserve the term “excitement” for the effects of emotions or stimulating drugs.

Dr. George Emerson became interested in various aspects of the relations of anesthesia to oxidation, when he went to West Virginia University School of Medicine. In searching for a non-addictive pain relieving agent, he developed dinitrophenyl-
morphine. In spite of the careful studies we made on this compound, we could not convince the well-entrenched committee of the National Research Council that we had anything worth while in regard to morphine addiction.

Our opinion is that drug addiction is largely a psychiatric reaction to an unbearable environment. Addiction is a form of “escapism.” Jack Shuman and Art Guedel argued this very effectively with us, and later Walter Treadway supported us. In spite of the fact that we were greatly interested in the relationship between chemical constitution and biological action, we could not get ourselves to believe that the addictive properties of morphine could be divorced from its pain relieving properties.

As I look back over the past twenty years, I yield to the temptation of jotting down some kaleidoscopic memories:

Anesthesia discussions at lunch time in the corner laboratory of Science Hall at the University of Wisconsin—Loevenhart’s idea of stimulating brain activity by blocking oxidation by carbon dioxide administration—Wesley Bourne’s confirmation of our ideas on ether acidosis—Ralph Waters’ arrival at Wisconsin to develop the first Department of Anesthesiology in the uncompleted new laboratory building—Discovering that carbon dioxide will actually anesthetize as Hickman had claimed a century earlier—Meeting of the Anesthesia Research Society with the enthusiasm of the Frank McMechans—Art Guedel’s endotracheal anesthesia, with the animal completely submerged in water—The startling demonstration by Hans Killian of rectal anesthesia with tribromethanol (“Avertin”), with the patient almost passing out with circulatory depression—Inauguration of resident training in anesthesia—Studying blood cell fragility under anesthesia with enthused students.

The royal gastronomic welcome of the anesthetists of San Francisco—Dr. Mary Botsford’s enthusiasm for nitrous oxide, on which she was a master—Demonstrations of carbon dioxide anesthesia in the new pharmacology laboratory facing the eucalyptus forest on Parnassus Heights—Carbon dioxide inhalations in cases of catatonic dementia praecox, with the thrill of seeing
The History of Surgical Anesthesia

some sense again in a “zombie”—Pete Knoefel’s arrival in a Rolls Royce, with trips to Middletown discussing anesthesia and Blake—Art Guedel’s demonstrations of carbon dioxide absorption—Enthusiasms and chagrins over divinyl ether—Ralph Waters’ visits with the Travel Club—Arguments with the young Blakians on dose effect and time concentration relations—Norm David and George Emerson on morphine derivatives—Andy Peoples’ still unpublished flowmeter apparatus for quantitative study of anesthetic concentrations—Nil Phatak working on local anesthetics—Pete Knoefel’s explosions with paraldehyde substitutes—Ben Abreu and Milt Silverman on halogenated hydrocarbons—Early studies on barbital substitutes—Joe Swim’s struggles with alcohol estimations—Zakheim’s water color in 1936 of our demonstration of pentothal intravenous anesthesia—Dave Marsh’s fractionating column and explesiometer.

* * *

The current centennial years in anesthesia are reviving widespread interest in scientific and clinical studies in this important field. Most importantly, these celebrations may focus our attention on the plain fact that we still know relatively little about pain or anesthesia. Perhaps as in every other phase of medicine, we shall learn that it is wiser to prevent the appearance of pain than to seek to relieve it after it occurs. To that noble achievement, Major Keys’ book may well be a fitting prelude, and to that ideal also it may most appropriately be dedicated.

Chauncey D. Leake
The History of Surgical Anesthesia
When, for the sake of a little more reputation, men can keep brooding over a new fact, in the discovery of which they might, possibly, have very little real merit, till they think they can astonish the world with a system as complete as it is new, and give mankind a prodigious idea of their judgment and penetration; they are justly punished for their ingratitude to the fountain of all knowledge, and for their want of a genuine love of science and of mankind, in finding their boasted discoveries anticipated, and the field of honest fame pre-occupied, by men, who, from a natural ardour of mind engage in philosophical pursuits, and with an ingenuous simplicity immediately communicate to others whatever occurs to them in their inquiries.

The Development of Anesthesia

“I esteem it the office of the physician not only to restore health, but to mitigate pain and dOLORS.”
—SIR FRANCIS BACON

A—The Beginnings

The history of the development of anesthesia is, like the history of many other useful contributions to civilization, filled with hopes and disappointments, comedies and tragedies, successes and failures. The bitterness of the controversy concerning the introduction of anesthesia with ether as well as nitrous oxide still raging after a century is disappointing in that it has about it the suggestion of a lack of historical perspective, as quarrels concerning priority usually have.

It has been suggested by Archer¹ that ancient man sensed relief from pain caused by bruises and sprains when the injured part was exposed to cold water in a lake or stream. Other wounds were said to have been favorably influenced by the sun’s heat, and later, by heat from fires or hot stoves.

Perhaps, as Fülöp-Miller² has recently observed, the first method used to eradicate pain by primitive peoples was to treat pain as a demon and to try to frighten the demon away. To do this there were many methods. The skin was tattooed to keep the demon of pain outside the body; rings were worn in the ears and noses; talismans, amulets, tigers’ claws and similar charms were worn to ward off evil spirits.

The first anesthetist probably was a woman, for the head of the primitive family was the Great Mother under the matriarchal system, which has been said by some anthropologists to have
been the status of society in primitive times.* The Great Mother
was priestess and sorceress, and consequently was the founder of
the healing art. When a primitive sick man could not relieve his
own suffering he called on the priestess. Conjurations and spells
were resorted to, magic was applied, and pain was thought to be
banished thereby.

Even under the patriarchal state, which some anthropolo-
gists have said subsequently developed, woman remained as a
healer. Indeed, the classic example was the blonde Agamede of
the Greeks, who was considered to wield exclusive power over
the demons of illness and thus was able to banish pain. Gradu-
ally, however, the medicine man, conjurer or shaman took her
place. Using different technics, he achieved the same results in
the banishment of pain. He muttered magic incantations. He
wrestled and fought the invisible demon. If the soul had been
drawn from the body, thus causing pain, he searched for the
hiding place of the soul and triumphantly returned the soul to
the sufferer's body, thus relieving the patient of his pain.

Later in the development of society the medicine man was
replaced by the priest, the servant of the gods. Priests have ever
ministered to the sick and they relied on prayer for the allevia-
tion of pain. Thus, the fate of the patient was entrusted to a
higher power.

With the birth of Christianity came a concept for the relief of
pain, based on divine healing through touch and prayer. One of
the tasks of the Son of God and his followers was the banishment
of suffering of all mankind. This was accomplished through the
power of touch as well as prayer, which was willed down through
the ages from Christ through the disciples to the Church fathers
and ultimately to all those who had ministerial duties. In this
manner the church of the early Middle Ages became a healing
institution. Priests, monks and nuns, who to a great extent repre-
sented the church, practiced the healing art and were thought to
be able to relieve pain. As some historians have shown, the early
monks and their helpers not only used empirical methods for the

[Fig. 1] Early use of alcohol for anesthetic purposes in a monastic hospital. From Diebold Schilling’s *Swiss Chronicle*, 1513.
Bulleins
Bulwarke of defence
against all Sicknes, Sornes, and wounderes, that doth
daily assaults mankind, which so long as it
is kepye with
Helleins the Gardiner, Helde the
Physitian, with the
Their Orygions, to helpe the
wounded soldiers. Gathered and pra-
ticed by the most worthy lea-
ted, bothe old and newe: to
to the grete comfort of
mankind: Given
by William
Bulleyn,
and ended this March
Anno salutis.1562.

Imprinted at London, by
Thomas Norton.
The Beginnings

relief of pain but also developed practical aids. Indeed, as early as 1513 monks used alcohol to alleviate pain prior to and during surgical intervention (fig. 1).

The early Christian kings tried to cure the sufferings of their subjects from many diseases by the laying on of hands. This, as has been suggested, formerly was the province of the ministers of the church. But the kings usurped this privilege for their own protection. They formulated the theory of the “divine right of kings,” which was convenient for many other purposes in addition to cure of the sick. Later, “touching” by monarchs was reserved for special diseases such as scrofula or the “King’s evil.”

Long known to man has been the use of drugs to bring about artificial sleep. Drugs which brought about loss of consciousness were compounded from many roots, barks, herbs, berries, seeds and blossoms of flowers. Those most mentioned in the literature which were taken to relieve the pain of surgical operations were henbane, poppy, mandragora and hemp.

A Babylonian clay tablet of about 2250 B.C. reveals a remedy for the pain of dental caries, according to Prinz. Cement consisting of henbane seeds in powdered form was mixed with gum mastic and applied to the cavity.

In the Odyssey of Homer it is recorded that Helen, the daughter of Zeus, prepared a drug, possibly opium, dissolved in wine to sleep off grief and anger and to forget pain: “Now elsewhere Helen turned her thoughts, the child of Zeus. Straightway she cast into the wine of which they drank a drug which quenches pain and strife and brings forgetfulness of every ill.” The Greeks also used anodyne poultices to deaden pain. Thus in the Iliad, Patroclus worked on Eurypylus:

Cut out the biting shaft; and from the wound
With tepid water cleansed the clotted blood;
Then pounded in his hands, the root applied
Astringent, anodyne, which all his pain
Allay’d; the wound was dried, and stanch’d the blood.

* The practice of touching for the scrofula was confined in Europe to the two Royal Houses of England and France. It cannot be traced back to an earlier date than the reign of Edward III in England (1327-1377) and that of Louis IX in France (1226-1270). See Encyclopaedia Britannica. Ed. 14, v. 13, p. 398.
The History of Surgical Anesthesia

According to Archer,¹ Aesculapius, the god of medicine, was supposed to have used a potion, nepenthe, to produce insensibility in his patients, who were then operated upon.

The Greeks and later the Romans also resorted to a sort of local anesthesia. They placed on the region they desired to anesthetize the “stone of Memphis” treated with vinegar. According to Kleiman⁵ it is possible that the anesthetic effect was obtained by dulling, for the Memphis stone was composed of carbonates which, in coming into contact with the vinegar, were said to have liberated carbon dioxide which numbed the affected part.

It is well known that the Semites compressed the veins before circumcision. Egyptian, as well as Assyrian, physicians obtained an artificial sleep for their patients by quickly compressing the carotid vessels of the neck, possibly by producing a temporary anemia.

Dioscorides,* the famous Greek physician of the first century A.D., administered the root of the mandragora plant boiled in wine to his patients before submitting them to the knife.⁶ Galen used this plant experimentally to paralyze sensation and movement. Curiously enough, mandragora was employed for centuries in Asia by the Chinese and the Hebrews in cases of criminologic investigation. Criminals were compelled to drink a concoction in a form of infusion with other drugs. This produced a confused mental state which often led to a confession of crime. Mandragora also was administered, paradoxically, to aid in the relief of the sufferings and tortures endured by accused persons. In such an event it was known as the “potion of the condemned.” Kleiman⁶ said that Pliny observed that the “potion of the condemned” was often given to diminish the agonies of crucifixion. The potion which Jesus refused at his crucifixion is variously described by the evangelists Matthew, Mark, and John as wine or vinegar mingled with gall, myrrh, or hyssop.

The ancient Scythians, as mentioned by Herodotus, breathed

* For the first description in English of the properties of the mandragora of Dioscorides see p. 10. Chauncey Leake has suggested in a personal communication that mandragora contains atropine-like alkaloids which might produce dissociation of nerve pathways with resulting diminution of the sense of pain.
The Beginnings

fumes produced by a certain form of hemp (Cannabis indica). From this they obtained a state of mental excitation followed by sleep. The Egyptians, as well as the Arabians, similarly, inhaled the fumes of this plant which they called hashish (that is, hemp), from which they also obtained an exalted mental state. In the third century, Hua T'o, the Chinese physician, utilized Indian hemp to render his patients unconscious. This practice was also used in many other countries.

As suggested by Garrison (p. 153), Henry Sigerist found in the Bamberg Antidotarium of the ninth century, a recipe for the "soporific sponge." Karl Sudhoff found a like recipe in a Monte Cassino Codex of the same period.

In the Antidotarium of Nicolas of Salerno who possibly lived in the twelfth century* there is a reference to the soporific sponge as follows:†

Spongia Somnifera

Take . . . of opium thebaicum, juice of hyoscyamine, unripened berry of the blackberry, lettuce seed, juice of hemlock, poppy, mandragora, ivy . . . Put these all together in a vessel and plunge therein a new sea-sponge just as it comes from the sea, taking care that fresh water does not touch it. And put this in the sun during the dog-days until all the liquid is consumed. And when there is need, dip it a little in water not too warm, and apply it to the nostrils of the patient, and he will quickly go to sleep. When, moreover, you want to awaken him, apply juice from the root of the fennel and he will soon bestir himself.

In the thirteenth century, Hugh of Lucca, as reported by his son, Theodoric, prepared a soporific agent with opium as the base. It also included hemlock, henbane, leaves of mandragora, wild ivy, and the seed of some salad plant. This mixture also was administered on a sponge to patients and apparently was successful in producing anesthesia for some surgical procedures. Having previously steeped the sponge in a soporific mélange, he allowed it to dry. When this sponge was ready for use after soaking in hot water, he applied it under the nose of the patient, who

† Nicolaus Salernitanus, Antidotarium. Venice, Nicolaus Jenson, 1471, f. 33b.
The History of Surgical Anesthesia

was instructed to breathe deeply.* To revive the patients sponges filled with vinegar were held under their noses.

That soporific draughts were sometimes an accepted prelude to surgical operations can be inferred from the fact that writers and poets talked about their use. Thus in Boccaccio's *Decameron*† in the fourth day and tenth story as told by Dioneo, there is an illustration of anesthesia produced by this method:

... It happened that there came to the attention of the physician [Maestro Mazzeo della Montagna] a patient with a gangrenous leg, and when the master had made an examination he told the relatives that unless a decayed bone in the leg were removed either the entire leg would have to be amputated or the patient would die; moreover, if the bone were removed, the patient might recover, but he refused to undertake the case except as if the man were already dead. To this the relatives agreed and surrendered the patient to him.

The doctor was of the opinion that without an opiate the man could not endure the pain and would not permit the operation, and since the affair was set for the evening, he distilled that morning a type of water after his own composition which had the faculty of bringing to the person who drank it sleep for as long a time as was deemed necessary to complete the operation.

The action of the medicated sponge was uncertain because there could be no standardization of the drugs used, and it therefore fell into disuse. Probably one of the reasons why anesthesia in general was so slow in developing was the fact that no drugs were standardized. No attempt was made to purify them or to regulate dosage. Often a drugged sleep resulted in death. This in itself discouraged the more staid physicians from the conquest of pain. Then, too, pain was considered in a holy light; which is to say, something that God deemed good for mankind. This was especially true in obstetrics. Babcock⁸ has reported the case of

* The following is a literal translation from Theodoric's *Surgery* dealing with the medicated sponge (see reference 7):

Recipe for an inhalant to use in surgery as prescribed by Master Hugo. Rx. One ounce each of poppy juice, juice of unripe mulberries, henbane, juice of (coconidii?), juice of mandrake leaves, juice of tree ivy, juice of wild mulberry, half?, lettuce, seed of a sorrel which has hard round fruit, and hemlock. Mix all these together in a copper kettle, then put a new sponge into it, and let it stand in the sun in the dog days until it has completely evaporated. Then as often as needed put the sponge in warm water for an hour and apply it to the nostrils of the person to be operated upon until he falls asleep; then proceed with the surgery; and when this has been performed, to wake him up again apply another sponge soaked in vinegar repeatedly to his nostrils.

† Boccaccio, *Il Decamerone* (Firenze, Adriano Salani, 1928), v. I, Giornata Quarta, Novella Decima (pp. 436-437).
The Beginnings

Eufame MacAlyane of Edinburgh, who in 1591 was burned alive on Castle Hill for seeking the assistance of Agnes Sampson for the relief of pain at the birth of her two sons. The time was not ripe for the acceptance of anesthesia.

In the thirteenth century, Raymundus Lullius, the prominent Spanish Alchemist, may have noticed a white fluid and may have called it "sweet vitriol." Two centuries later Paracelsus, the great physician, searching for an agent that would relieve pain, mixed sulfuric acid with alcohol. He distilled this mixture and rediscovered "sweet vitriol" which was not called "ether," however, until 1730, when Frobenius of Germany so named it; but as early as 1540 Valerius Cordus described the synthesis of what later was to be called ether. The first written account of this appears in his De Artificiosis Extractionibus, Strassburg, 1561, seventeen years after his death.

A digression to Paracelsus reveals some very important evidence which supports a claim for him as the founder of anesthesia. In writing of his experiments with fowl he said:

However, the following should be noted here with regard to this sulphur, that of all things extracted from vitriol it is most remarkable because it is stable. And besides, it has associated with it such a sweetness that it is taken even by chickens, and they fall asleep from it for a while but awaken later without harm. On this sulphur no other judgment should be passed than that in diseases which need to be treated with anodynes it quiets all suffering without any harm, and relieves all pain, and quenches all fevers, and prevents complications in all illnesses.

Perhaps the first mention of an anesthetic agent in English in a printed medical book is found in William Bullein's interesting work entitled Bulwarke of Defence Against all Sickness (fig. 2). This was first published in 1562. In the first several pages of this book

* A search through the works of Lullius does not reveal this. The best source found so far for this statement is in the ninth edition of the Encyclopaedia Britannica (ref. 9).

† Valerius Cordus died in Rome on Sept. 25, 1544, at the early age of 29 years. He was born in Siemershausen, Hessa, on Feb. 18, 1515, and studied medicine at the University at Wittemberg. He remained there for some time and lectured on Dioscorides. In 1542 he removed to Italy and continued his work in botany. Valerius correctly noted that ether promotes the flow of mucous secretion from the respiratory tract and that it affords relief from whooping cough. He also commented on its high volatility. For an appreciation of his contribution to anesthesia consult Chauncey Leake's article, Valerius Cordus and the Discovery of Ether, and G. K. Tallmadge's translation, The Third Part of the De Extractione of Valerius Cordus (see ref. 11).

[9]
The History of Surgical Anesthesia

occurs “The Booke of Simples.” It is in the form of an imaginary conversation between a certain Marcellus, a surgeon, and Hillarius, a gardener. Marcellus asks Hillarius, “What is the nature of Mandragora?” Hillarius after talking at great length concerning the history and properties of the mandrake has this to say (folio 44, recto):

The seedes of the aple, saieth Dioscorides, beyng drunke, will purge the bellie. The juce of this herbe pressed forthe, and kepte in a close yearthen vessel, accordyng to arte: this bryngeth slepe, it casteth men into a trauns on a depe tirrible dreame, untill he be cutte of the stone.

That same year (1562), Arthur Brooke’s poem, The Tragicall Historye of Romeus and Juliet, was published. The earliest known version, which is an undoubted direct ancestor of Shakespeare’s plot, is the history, Giulia e Romeo, narrated by Luigi da Porto and published in Venice about 1530. But Brooke’s English poem probably supplied Shakespeare with much of the material for his own Romeo and Juliet.

In Brooke’s poem* there is reference made to a sleeping potion as follows:

[Friar Laurence thus speaks to Juliet (lines 2125-2142)]:

Knowe therfore, (daughter) that / with other gyftes which I Haue well attained to, by grace / and fauour of the skye, Long since I did finde out, / and yet the way I knowe, Of certain rootes, and sauory herbes / to make a kinde of dowe, Which baked hard, and bet / into a powder fine, And dronke with conduite water, or / with any kynd of wine, It doth in halfe an howre / astonne the taker so, And mastreth all his sences, that / he feeleth weale nor woe: And so it burieth vp / the sprite and liuing breath, That euen the skilfull leche would say, / that he is slayne by death. One vertue more it hath / as meruelous as this; The taker, by receiuing it, / at all not greeued is; But paineslesse as a man / that thinketh nought at all, Into a sweete and quiet slepe / immediately doth fall; From which, (according to / the quantitie he taketh) Longer or shorter is the time / before the sleper waketh; And thence (theffect once wrought) / agayne it doth restore Him that receaued vnto the state / wherein he was before.

In Shakespeare’s *Romeo and Juliet,* the Friar does not discuss the potion in the same manner but rather his speech is a remarkable description of the signs of profound anesthesia! In speaking to Juliet the Friar continues:

> Take thou this vial, being then in bed,
> And this distilling liquor drink thou off;
> When presently through all thy veins shall run
> A cold and drowsy humour; for no pulse
> Shall keep his native progress, but surcease;
> No warmth, no breath, shall testify thou livest;
> The roses in thy lips and cheeks shall fade
> To paly ashes, thy eyes’ windows fall,
> Like death, when he shuts up the day of life;
> Each part, depriv’d of supple government,
> Shall, stiff and stark and cold, appear like death:
> And in this borrowed likeness of shrunk death
> Thou shalt continue two and forty hours,
> And then awake as from a pleasant sleep.

In the works of Shakespeare there are a few references to poppy, mandragora, and “drowsy” syrups. A good example is found in *Othello* in Act 3, scene 3, lines 330-333, where the villain, Iago, speaks of Othello:

> Look, where he comes! Not poppy, nor mandragora,
> Nor all the drowsy syrups of the world
> Shall ever medicine thee to that sweet sleep
> Which thou ow’dst yesterday.

Again in *Antony and Cleopatra* (Act 1, scene 5, lines 3-6) Cleopatra addresses her attendant, Charmian:

> Cleo.: Ha, ha! Give me to drink mandragora.
> Char.: Why, madam?
> Cleo.: That I might sleep out this great gap of time
> My Antony is away.

At the beginning of the seventeenth century, Valverdi made use of a sort of regional anesthesia. He compressed nerves and blood vessels near the region to be operated on, a procedure similar to that of the ancient Semites and Assyrians, as mentioned previously. Ambroise Paré also knew the anesthetic value of compression. Indeed, as late as 1784, James Moore produced local anesthesia of a limb by compressing the nerves of the trunk.

* Act 4, scene 1, lines 93-106.
The History of Surgical Anesthesia

It is known that John Hunter used this method in a case of amputation below the knee, with some degree of success.

The Renaissance fostered a great scientific spirit which made for many remarkable advancements. Emphasis was placed on the development of chemistry and physics. Search was made in these two fields for agents to relieve pain. As will be shown later, the role of chemistry is of great importance in the history of anesthesia. In addition to genuine workers who produced valid contributions, there were many "pseudo"-scientific thinkers who speculated, often chiefly to their own benefit, regarding the cause and cure of disease. One of these, as Fülöp-Miller has so vividly described, was Franz A. Mesmer, who introduced the doctrine of vitalism. Mesmer received his degree in medicine from the University of Vienna in 1766. Vitalism was based on the assumption that some men possess the authority of transmitting what are called "the harnessed powers of the cosmic energies." These "cosmic energies" were remarkable in that they banished pain and suffering. Mesmer first used a magnet as an instrument to transmit the cosmic energy to the body of an afflicted person. He had remarkable success with the magnet, and soon thousands of patients came to him to receive the vital energies. Mesmer soon found it impossible to treat all his patients individually, so he took a wooden rod and by making passes over it invested the rod with magnetic energy. By pointing the stick at several patients he claimed that he could cure many simultaneously.

Later, Mesmer announced that the healing force emanated from his own body, and that subsequently the same beneficial results were obtained. This old healing power of the touch was rechristened "animal magnetism" (fig. 3). Absurd as Mesmer's ideas were, his confidence was shared by many leading dignitaries of the day, including Marie Antoinette, the Duke of Bourbon, and Lafayette, who recommended Mesmer's ideas to America.

Interestingly enough Benjamin Franklin,* who was at that

[Fig. 4] Hickman experimenting with anesthesia on animals. From an oil painting in the Wellcome Historical Medical Museum. Courtesy of the Wellcome Foundation, Ltd.
time in Paris, was skeptical about “animal magnetism” and served on a committee which exposed it as a fraud.

Mesmer was opposed by the physicians and scientists who thought of him as a quack, and he could not obtain a license to practice medicine in France. To get around this difficulty, Mesmer took in a partner, a licensed doctor, Charles Deslon. The two of them gave group treatments and after the war was ended, early in 1784, raised 340,000 livres to set up a new scientific academy. To expose the charlatanism of this partnership, the King of France appointed a commission to investigate animal magnetism as practiced by the licensed physician, Deslon. Four members of the commission were physicians of the Faculty of Paris, including Joseph-Ignace Guillotin, after whom the guillotine was named, and five members were drawn from the Academy of Sciences. These included Franklin, LeRoy, Bailly, Lavoisier and DeBory. Franklin’s name headed the report which came to the conclusion that there was no such thing as “animal magnetism” and therefore no cures could be expected.

Somnambulism in Europe, a development of mesmerism, had a curious beginning. One of Mesmer’s pupils, Count Maxime de Puységur of Busancy, in treating a patient who had been tied to a tree, made passes over his body to increase the magnetic influence. At the moment the treatment should have taken effect, the patient fell into a profound sleep. The count ordered him to awake and to untie himself. The patient complied and walked across a park with his eyes closed. He also obeyed all commands of the master.

After Puységur had experimented in other cases and had achieved similar results, the success of somnambulism spread over Europe. In the British Isles, James Esdaile and John Elliotson of Edinburgh adopted it, being convinced that it would prove an infallible agency for the relief of pain during surgical operations. James Braid of Manchester also felt that hypnotism was capable either of throwing a patient into a state in which he would be unconscious of the pain of a surgical operation or of greatly moderating it.
Because the leading surgeons were skeptical of this "remedy," Esdaile journeyed to India to continue his experiments. According to Fülöp-Miller, members of certain Indian castes had known for centuries of a process akin to somnambulism, calling it Yar-Phoonk. Esdaile said that he had removed scrotal tumors successfully from patients in this state of artificial sleep. In Europe somnambulism failed to relieve operative pain, and in America, John Collins Warren of the Massachusetts General Hospital had no success with this method.

B—FROM PRIESTLEY TO MORTON

Thus far, as has been intimated herein, no dependable means of relieving pain during surgical intervention that was generally acceptable had been discovered. To be sure, in isolated cases, it is apparent that many remedies had met with partial success. By far the most acceptable method was to offer the patient a strong drink of an alcoholic beverage and to operate swiftly. This did not abolish the sense of pain. It remained for chemistry, plus American ingenuity and resourcefulness, to provide an answer to this problem.

The pioneer who discovered carbonic acid gas (date, unknown), oxygen* (1771) and nitrous oxide (1772) was Joseph Priestley. His fundamental research on gases was the foundation of the discovery of modern surgical anesthesia, although he was unaware of it. Priestley was a dissenting Unitarian minister. In 1791 his services as a minister were abruptly terminated by riots in which his house was pillaged and burned because of his known sympathies for the French Revolution. Priestley† moved to America in 1794 to seek political and religious freedom and died in Northumberland County, Pennsylvania, in 1804. Because Priestley suggested that the inhalation of oxygen might be of

* Karl Wilhelm Scheele of Sweden is said to have discovered oxygen independently the same year (1771) and to have described it in 1777 in his Chemical Essay on Air and Fire.
From Priestley to Morton

benefit for certain diseases of the lungs, some members of the medical profession as well as quacks developed "pneumatic medicine." This soon became a treatment fad, and inhalations of not only oxygen but also of hydrogen and nitrogen were employed as therapy chiefly for asthma, catarrh and consumption. Later, some physicians employed inhalations of various gases for the treatment of paralysis, scurvy, hysteria and cancer.

It is of interest to note that an American chemist and physician, S. Latham Mitchill, administered nitrous oxide to animals with such dire results that he came to the conclusion that this gas was very poisonous. He also believed that nitrous oxide might possibly be the contagium for the spread of epidemics. His opinions were accepted without reservation and for many years no physician dared to make use of nitrous oxide. However, in 1795, Humphry Davy, then a young man of seventeen years, was bold enough to inhale this gas. Instead of dying, he experienced many pleasurable sensations; he felt an agreeable sense of giddiness, a relaxation of the muscles, noticed his hearing to be more acute, and in general felt so cheerful that he was compelled to laugh.

In 1800, Davy, who in early life had been a surgeon's assistant, published the results of his studies on nitrous oxide in that now much sought-after volume entitled: Researches, Chemical and Philosophical; Chiefly concerning Nitrous Oxide . . . (fig. 5). This important book not only outlined his basic researches but also suggested the possible anesthetic qualities of nitrous oxide. In one section of the book (p. 465), Davy described his use of the gas in the temporary alleviation of the pain of inflammation of the gums induced by eruption of a wisdom tooth:

In cutting one of the unlucky teeth called dentes sapientiae, I experienced an extensive inflammation of the gum, accompanied with great pain, which equally destroyed the power of repose and of consistent action.

On the day when the inflammation was most troublesome, I breathed three large doses of nitrous oxide. The pain always diminished after the first four or five respirations; the thrilling came on as usual, and uneasiness was for a few minutes swallowed up in pleasure. As the former state of mind returned, the state of organ returned with it; and I once imagined that the pain was more severe after the experiment than before.
Later in his book (p. 556), Davy again mentioned the possibility of the use of nitrous oxide as an anesthetic agent.

As nitrous oxide in its extensive operation appears capable of destroying physical pain, it may probably be used with advantage during surgical operations in which no great effusion of blood takes place.

The History of Surgical Anesthesia

Later in his book (p. 556), Davy again mentioned the possibility of the use of nitrous oxide as an anesthetic agent.

As nitrous oxide in its extensive operation appears capable of destroying physical pain, it may probably be used with advantage during surgical operations in which no great effusion of blood takes place.

RESEARCHES,

CHEMICAL AND PHILOSOPHICAL;

CHIEFLY CONCERNING

NITROUS OXIDE,

OR

DEPHLOGISTICATED NITROUS AIR,

AND ITS

RESPIRATION.

By HUMPHRY DAVY,

SUPERINTENDENT OF THE MEDICAL PNEUMATIC INSTITUTION.

LONDON:
PRINTED FOR J. JOHNSON, ST. PAUL'S CHURCH-YARD.
BY SIGGS AND COTTLER, BRISTOL.
1800.

[Fig. 5] Title page to Humphry Davy's book wherein he discussed the possible use of nitrous oxide as an anesthetic agent.
Humphry Davy constructed what was perhaps one of the first modern gas machines, for in 1799 he is known to have used a gas tank for the storage of pure nitrous oxide (fig. 6). To this he attached an almost impermeable silken bag from which he inhaled the gas.*

There were others, of course, besides Davy who soon developed an interest in nitrous oxide. According to Wilks and Betteny, William Allen, lecturer on chemistry at Guy’s Hospital, wrote in his diary in March, 1800:

Present, Astley Cooper, Bradley, Fox, and others. We all breathed the gaseous oxide of azote. It took a surprising effect upon me, abolishing completely at first all sensation; then I had the idea of being carried violently upward in a dark cavern with only a few glimmering lights. The company

* In 1795 James Watts constructed a gas inhaler for Thomas Beddoes. See Beddoes, Thomas and Watts, James: Considerations on the Medicinal Use, and on the Production of Factitious Aires. Bristol, J. Johnson, 1795.
The History of Surgical Anesthesia

said that my eyes were fixed, face purple, veins in the head very large, apoplectic stertor. They were all much alarmed, but I suffered no pain and in a short time came to myself.

Interestingly enough, Dr. John C. Warren, who often enters into a story of anesthesia, used the inhalation of ether in 1805 as a means of relieving the last stages of pulmonary inflammation.\(^{19}\)

Michael Faraday, a student of Humphry Davy, was the next investigator to make a contribution to the modern application of anesthesia. He did much original work on the isomerism of butylene with ethylene, and on the chlorides of carbon. He also liquefied many gases. While thus experimenting he noticed the soporific nature of ether vapor. In 1818 he wrote in the Quarterly Journal of Science and the Arts:\(^{20}\)

V. Effects of Inhaling the Vapour of Sulphuric Ether

When the vapour of ether mixed with common air is inhaled, it produces effects very similar to those occasioned by nitrous oxide. A convenient mode of ascertaining the effect is obtained by introducing a tube into the upper part of a bottle containing ether, and breathing through it, a stimulating effect is at first perceived at the epiglottis, but soon becomes very much diminished, a sensation of fulness is then generally felt in the head, and a succession of effects similar to those produced by nitrous oxide. By lowering the tube into the bottle, more of the ether is inhaled at each inspiration, the effect takes place more rapidly, and the sensations are more perfect in their resemblance to those of the gas.

In trying the effects of the ethereal vapour on persons who are peculiarly affected by nitrous oxide, the similarity of sensation produced was very unexpectedly found to have taken place. One person who always feels a depression of spirits on inhaling the gas, had sensation of a similar kind produced by inhaling the vapour.

It is necessary to use caution in making experiments of this kind. By the imprudent inspiration of ether, a gentleman was thrown into a very lethargic state, which continued with occasional periods of intermission for more than 30 hours, and a great depression of spirits; for many days the pulse was so much lowered that considerable fears were entertained for his life.

Davy had suggested the anesthetic possibilities of nitrous oxide and Faraday had noticed the similar effects of ether. But the evaluation of any process is necessarily slow, and it was some time before physicians were to apply these and similar gases to the relief of pain during surgical operation.

Undoubtedly, one of the heroic figures in the development of
From Priestley to Morton

surgical anesthesia was Henry Hill Hickman. This scholarly Englishman was admitted in 1820 as a member of the Royal College of Surgeons of London, at the early age of 20 years. He was also a member of the Royal College of Surgeons of Edinburgh. In 1824 he carried out a series of experiments by operating, without causing pain, on animals after the administration of carbon dioxide gas (fig. 4). Because of the many prejudices of the era, he did not persuade surgeons either at home or abroad to allow him to try this gas as an anesthetic on their patients.* Nevertheless, he deserves the credit of having been the first of the modern investigators to prove by experimentation on animals that the pain of surgical operation could be abolished by the inhalation of a gas.

Hickman recognized that certain vapors introduced into the lungs and thence into the circulation of the blood should provide a means of bringing on an artificial sleep prior to surgical intervention. He had mice, puppies, and a mature dog inhale carbonic acid gas, and he thus obtained anesthesia for them during surgical procedures. According to Buxton, Hickman further recognized the importance of maintenance of the constant flow of the blood and of the surgeon’s being prepared to meet and deal with circulatory collapse.

On February 21, 1824, Hickman wrote a letter to Mr. T. A. Knight of Downton Castle, near Ludlow, giving full account of his investigations. Knight was a fellow of the Royal Society and Hickman, a personal friend, hoped to obtain recognition from this much respected body so that his work might be checked by others. In the same year Hickman published his famous pamphlet, “A letter on suspended animation” (fig. 7). In this pamphlet he suggested the possibilities of the production of anesthesia

* Interestingly enough Paul Bert over fifty years later, while studying the toxic action of carbonic acid gas and proving that it was not a heart poison, noticed its anesthetic action. This suggested to him the idea of a possible surgical application. He proved experimentally that carbonic acid gas mixed with oxygen in proportions of 40% and 60% respectively gave good results. He cautioned his readers however as follows: “I am far from believing that the preceding researches are precise and detailed enough to authorize immediate application: an experimental table upon which a dog is fastened is one thing, and the bed of a patient is another.” See Bert, Paul: Barometric Pressure: Researches in Experimental Physiology. Tr. by Mary A. Hitchcock and Fred A. Hitchcock. Columbus, Ohio, College Book Company, 1943, pp. 921-924.
The History of Surgical Anesthesia

prior to surgical operations on human patients. Failing to impress his own countrymen with the importance of his investigations, he turned to the French capital. In April, 1828, he presented a memorial to King Charles X of France, in which he explained the importance of his discovery. In August of 1828 he asked the French Academy of Medicine to investigate his claims. The academy named a committee to do this, but nothing came of it.

It is hard to believe that the leading scientists of both England and France failed to recognize the contribution of Hickman or to

A

LETTER

ON

SUSPENDED ANIMATION,

CONTAINING

EXPERIMENTS

Showing that it may be safely employed during

OPERATIONS ON ANIMALS,

WITH THE VIEW OF ESTABLISHING

ITS PROBABLE UTILITY IN SURGICAL OPERATIONS ON THE

Human Subject,

Addressed to

T. A. KNIGHT, ESQ. OF DOWNTON CASTLE,
Herefordshire,
ONE OF THE PRESIDENTS OF THE ROYAL SOCIETY,

BY DR. H. HICKMAN,
OF SMIFNFL;
Member of the Royal Medical Societies of Edinburgh, and of
The Royal College of Surgeons, London.

IRONBRIDGE: Printed at the Office of W. Smith.
1824.

[Fig. 7] Title page to Hickman’s pamphlet. Courtesy of the Wellcome Foundation, Ltd.
CRAWFORD W. LONG, aged twenty-six. From a crayon portrait made a few months after his first use of ether as an anesthetic.
Permit me to say, dear Sir, that a dentist and surgeon from Boston Mass were in Jefferson counties in 1844, 3 or 4 years after I removed here. I first learned that the dentist practised his profession and the surgeon operated for fractures— I have always thought it probable, that the dentist was Morton or Wells, & that a knowledge of my use of Ether in surgical operations was kept at that time.

[Fig. 9] Holograph letter by Crawford W. Long. (Clendening Library.)
investigate his claims scientifically.* Even Sir Humphry Davy, who had been president of the Royal Society, failed to be impressed. In France, the brilliant Baron Larrey alone supported Hickman. He had been army surgeon under Napoleon and knew the horrors of pain caused by surgical operations. He had found that wounded soldiers suffered little pain when they were operated on in a half-frozen condition. But his colleagues outvoted him and declined to push the matter. Hickman, of course, was most disappointed. He returned to England and died prematurely on April 5, 1830.

Meanwhile, in the United States, the use of ether and nitrous oxide was developing. Stockman of New York (according to Kleiman*) demonstrated the exhilarating effects of nitrous oxide as early as 1819. Following the advice of men like Beddoes, American physicians employed ether in the treatment of pulmonary tuberculosis and suggested it for other conditions. But it was the employment of nitrous oxide and ether for pleasurable purposes that largely contributed to the use of these gases in anesthesia. There were many itinerant "professors"† of chemistry who traveled through the towns and villages of the country, lecturing on gases and demonstrating the exhilarating effects of nitrous oxide, especially. Many times part of the demonstration consisted of having young members of the audience inhale ether vapor or nitrous oxide. These young participants became pleasantly drunk. They lost their sense of equilibrium, talked foolishly and sometimes laughed with complete abandon.

Soon some of these young persons were amusing themselves without lectures. "Laughing-gas parties" and "ether frolics" became the vogue. Sometime during the year 1839, according to Lyman,22 William E. Clarke, a young student of chemistry in Rochester, New York, was in the habit of entertaining his companions with inhalations of ether. While a student at Berkshire Medical College in 1841 and 1842, Clarke continued his "ether

† Samuel Colt, inventor of the revolver, in his early years was one of these.
The History of Surgical Anesthesia

entertainments.” Presumably because of these experiences, in January, 1842, having returned to Rochester, he administered ether from a towel to a young woman named Miss Hobbie, and one of her teeth was then extracted without pain by a dentist, Dr. Elijah Pope. This would appear to be the first use of ether anesthesia on record; it antedates what is at present known of the work of Long by at least two months.*

It was after a public demonstration, which he had not attended, of the effects of nitrous oxide that the young physician, Crawford W. Long (fig. 8) of Jefferson, Georgia, was moved to consider the possibility of administering ether to a patient so that he could operate without causing pain. He knew little about nitrous oxide, but had witnessed “ether frolics” while he was a medical student in the University of Pennsylvania. One of his friends, James M. Venable, who had participated in “ether frolics,” had for some time been discomforted by two small tumors on his neck. Here was an opportunity to demonstrate the effectiveness of ether. After some persuasion, Venable agreed to be operated on while he was under the influence of ether, and on the afternoon of March 30, 1842, Long removed one of the small tumors from Venable’s neck. The operation was performed successfully and the patient did not feel the surgeon’s knife nor did he suffer any pain. Crawford Long was the first man to use ether for the purpose of producing surgical anesthesia for other than dental operations. Dr. Long continued for some time to use ether for anesthesia in his operations. He hoped to encounter patients who needed to undergo major surgical procedures so that he might make a more convincing report, but in such a small community none came his way. Dr. Long published in the issue for December, 1849, of the Southern Medical and Surgical Journal an account of his discovery, but Morton’s work had been reported by Bigelow and Warren in the Boston Medical and Surgical Journal in 1846, as will be shown herein.

In the late Logan Clendening’s collection of materials relat-

* Apparently Clarke did not consider his contribution of importance, for it is not mentioned in an account of his life in Stone, R. F.: Biography of Eminent American Physicians and Surgeons, Indianapolis, Carlon and Hollenbeck, 1894, p. 89.
[Fig. 10] HORACE WELLS. From a print in the Clendening Library.
[FIG. 11] WILLIAM T. G. MORTON. From a print in the Clendening Library.
From Priestley to Morton

ing to the history of anesthesia is a holograph letter of Crawford W. Long, undated and unsigned (fig. 9). Its authenticity is attested by a letter written by Dr. Long’s daughter, Mrs. Frances Long Taylor. Mrs. Taylor’s letter presents evidence to show that this was the first draft of a letter written to Dr. G. L. McCleskey, “who was living near Jefferson, Ga., at the time of the visit of the two men from Boston and who recalls the name of one who operated upon a Miss Adeline McClendon for strabismus, Dr. [Y.] Bentley. The name of the dentist he had forgotten. They remained in town a week. I think 1844 was the time he gives as the time of their visit.”

In Dr. Long’s letter is the following revealing statement:

Permit me to say then, that a Dentist and a surgeon from Boston, Mass. were in Jefferson Jackson County in 1842, 3 or 4 and remained for several weeks. The dentist practiced his profession & the surgeon operated for strabismus—I have always thought it probable, that the Dentist was Morton or Wells, & that a knowledge of my use of ether in surgical operations was obtained at that time.

I have not been able to ascertain the name of the dentist, if you know the history of Dr. Wells, you can possibly ascertain (sic) whether he travelled South at the time mentioned.

It is of interest to note in passing that Dr. Long at about the same time as Sir James Simpson (1847) began the administration of ether in obstetrical work.26

It was at an exhibition of the exhilarating effects of nitrous oxide gas that the next important development in the history of anesthesia took place. On the evening of December 10, 1844, Dr. Gardner Q. Colton was demonstrating the effects of “laughing gas” before an enthusiastic audience at Union Hall in Hartford, Connecticut. According to Colton’s own story,27 one of the young men who volunteered to try the gas was Samuel A. Cooley, a drug clerk. He immediately came under the influence of the gas and while jumping about, struck his leg on a wooden settee. He bruised it badly. After taking his seat he was astonished to find his leg bloody. He felt no pain until the effects of the gas had worn off. Dr. Horace Wells (fig. 10), one of the town’s leading dentists, who had sat next to Cooley and had
himself sniffed the gas at Colton's urging, noticed this circumstance. When the audience was retiring, Dr. Wells asked Dr. Colton why a man could not have a tooth extracted without pain while he was under the influence of this gas. Dr. Colton replied that he did not know, because the idea had never occurred to him. Dr. Wells believed that it could be done and persuaded Colton to bring a bag of the gas to his office the next morning, December 11, 1844. Dr. John M. Riggs, a colleague (for whom Riggs' disease, or alveolar pyorrhea, is named), was called in to extract one of Wells' own teeth. Dr. Colton administered the nitrous oxide and Riggs extracted a molar. Dr. Wells on recovery was said to have exclaimed: "It is the greatest discovery ever made! I didn't feel it so much as the prick of a pin!"

At Dr. Wells' request, Dr. Colton taught him how to prepare the gas and then left Wells and continued his lectures on the exhilarating powers of nitrous oxide. Dr. Wells made and tested the effects of the gas and then journeyed to Boston to make known the discovery. He called on Dr. William Thomas Green Morton (fig. 11), a former student and partner, as well as other dentists and physicians, stating his discovery. According to Colton, they treated him as a visionary enthusiast.

Wells obtained permission from Dr. John C. Warren (fig. 12) to address the class in surgery at Harvard Medical School. At the close of his remarks, Wells administered the gas to a boy and extracted a tooth. Most unfortunately, the boy screamed out, for anesthesia had not been complete. Later, the patient admitted that he had suffered no pain and did not know when the tooth had been drawn. At the time, however, the students hissed and pronounced the so-called discovery a hoax. Had Dr. Wells' demonstration proved successful to all parties concerned, nitrous oxide probably would have been adopted for surgical anesthesia. But even though Wells returned to Hartford and used nitrous oxide successfully in his dental practice in 1845, as the deposition of some forty respectable citizens of Hartford indicates, the use of this gas was abandoned until June, 1863, when Dr. Colton revived it in New Haven, Connecticut, administering it for Dr.
From Priestley to Morton

J. H. Smith, a distinguished dentist of that city. Although Wells had failed to convince the world of the value of nitrous oxide as an anesthetic agent, he is credited with conceiving the idea of anesthesia and publicizing the possibility of its use.

William Morton had witnessed the unsatisfactory demonstration of his former partner and teacher, Horace Wells, under whom he studied dentistry. At that time Morton* had been a student at the Harvard Medical School, where he had for his preceptor Dr. Charles A. Jackson. Dr. Jackson was not only a qualified physician but also a chemist of note and among other accomplishments was well known for his researches in geology.

In the practice of dentistry, Morton, according to Miller, had invented an improved process for making artificial teeth. This required that his patients submit to the painful process of having the roots of their teeth extracted before Morton’s artificial teeth could be fitted. The pain of extraction of such roots was tremendous, and the procedure was unsatisfactory. Morton was constantly thinking of a means of alleviating this pain.

One day in July, 1844, a patient, Miss Parrot, asked to have a tooth filled, a process which ordinarily caused excessive pain. Many times Jackson had mentioned that ether sprinkled on the skin could relieve pain. Morton’s patient could not endure the pain caused by the necessary preparation for filling. To deaden the pain locally, Dr. Morton applied sulfuric ether to the adjacent tissue as recommended by Jackson. He was able to continue his work without hurting the patient. Because the action of ether as he administered it was slow, it was necessary for the patient to return on several subsequent days. One day, in using the ether a bit freely, Morton noticed its numbing effects on the surrounding parts of the face. The idea occurred to Morton that if the whole system could be brought under the influence of this drug, a valuable means of relief might be afforded for more difficult dental surgery.

The History of Surgical Anesthesia

Morton thought of the inhalation of ether. But he thought it would endanger life. He had learned on reading Pereira’s *Materia Medica* that a small amount of ether inhaled was not dangerous, but that inhalation of large amounts was dangerous. He began to experiment. First he submitted a puppy to the inhalation of ether. This was successful. Next he tried to anesthetize goldfish. He also experimented on insects, caterpillars and worms. One day the puppy sprang against a glass jar containing ether and broke it. The contents fell to the floor and Morton soaked his handkerchief in the portion that remained and applied it to his own mouth and nostrils. He felt the effects of the vapor and thought he might have had a tooth pulled without feeling pain.

Morton next tried to experiment on his two dental assistants, Thomas Spear and William Leavitt. But when they inhaled ether both students became greatly excited, not subdued. Something was wrong. He consulted Dr. Jackson. Jackson recommended that he try pure sulfuric ether. Morton professed ignorance of the use of sulfuric ether and Jackson* later based his claim to the discovery on his suggestion to Morton that ether would anesthetize the patient. Morton did find out from Jackson, however, that pure sulfuric ether would serve his purpose better than the commercial product. After experimenting on himself, he was ready for the proper patient.

On September 30, 1846, an opportunity presented itself for Morton to test his theoretic discovery. On the evening of that day a patient, Eben H. Frost, came to Dr. Morton’s office. An ulcerated tooth was causing him considerable pain and he wished

* Dr. Jackson felt that he was the discoverer not only of anesthesia (until he heard about Long’s claim) but also of the telegraph. Jackson was a passenger with Prof. Samuel F. Morse on board the ship “Sully,” sailing from Le Havre to New York in October, 1832. One day after dinner there was a discussion among the company on the recent electro-magnetic discoveries. Jackson told about his experiences in Paris in witnessing the electric demonstrations of Ampère. The question was asked of Jackson if the length of wire in the coil of a magnet did not retard the passage of electricity. In proof that it did not, Jackson told how Franklin had caused electricity to travel twenty miles by means of a wire stretched up the Schuylkill River. Jackson claimed that Morse conceived the telegraph then and there, basing his claim to the discovery on this chance conversation. See Hodges, R. M.: *A Narrative of Events Connected with the Introduction of Sulphuric Ether into Surgical Use.* Boston, Little, Brown, and Co., 1891, pp. 64-65. Also Jaffe, Bernard: *Men of Science in America.* New York, Simon and Schuster, 1944, pp. 193-194.
[Fig. 12] JOHN C. WARREN. Reproduced from Camac, C. N. B. (Compiler): Epoch-making contributions to medicine, surgery and the allied sciences. Courtesy of W. B. Saunders Co., 1909.
to have it extracted. Dreading the operation, Frost asked to be mesmerized. Morton said that he had something better and induced his patient to inhale sulfuric ether. The success of his first dental operation under anesthesia produced by ether is best told by the *Boston Journal* which Miller said printed an account of the operation the following day:

Last evening, as we were informed by a gentleman who witnessed the operation, an ulcerated tooth was extracted from the mouth of an individual, without giving him the slightest pain. He was put into a kind of sleep, by inhaling a preparation, the effects of which lasted about three-quarters of a minute, just long enough to extract the tooth.

Shortly after the painless extraction of Eben Frost’s tooth, Morton called on Dr. John C. Warren, explained his discovery and asked permission to try it at some operation. In reply to his visit he received the following historic note from Dr. C. F. Heywood, house surgeon to the Massachusetts General Hospital:

Dear Sir: I write at the request of Dr. J. C. Warren, to invite you to be present on Friday morning at 10 o’clock, at the hospital, to administer to a patient who is then to be operated upon the preparation which you have invented to diminish the sensibility to pain.

Yours respectfully, C. F. HEYWOOD,

House Surgeon to the General Hospital.

Dr. Morton, Tremont Row, October 14, 1846.

On that famous Friday morning, October 16, 1846, members of the staff of the hospital filled the operating room. Because Morton had to wait for the completion of his inhaling apparatus, which was being constructed for him by an instrument maker, he arrived a few minutes late at the hospital. Meanwhile, Dr. Warren, believing that Morton had not intended to fulfill his mission, prepared to proceed with the operation in the usual manner. Then Morton appeared on the scene and after apologizing for his slowness, induced the patient, a young man named Gilbert Abbot, to inhale the vapor from his new apparatus, the principle of which, according to Miller, has been but slightly improved in all the succeeding years (fig. 13).
The History of Surgical Anesthesia

As to the actual operation, the removal of a tumor of the jaw, the report of the surgeon, John C. Warren, may be consulted:

On October 17th [i.e., 16th], the patient being prepared for the operation, the apparatus was applied to his mouth by Dr. Morton for about three minutes, at the end of which time he sank into a state of insensibility. I immediately made an incision about 3 inches long through the skin of the neck, and began a dissection among important nerves and blood vessels without any expression of pain on the part of the patient. Soon after he began to speak incoherently, and appeared to be in an agitated state during the remainder of the operation. Being asked immediately afterwards whether he had suffered much, he said that he had felt as if his neck had been scratched; but subsequently, when inquired of by me, his statement was, that he did not experience pain at the time, although aware that the operation was proceeding.

On the next day, Dr. George Hayward performed an operation on a patient anesthetized with ether. He removed a large fatty tumor from the arm of a female. Morton was the anesthetist. The operation was a success and there was no evidence of pain, excepting some occasional groans during the last stage. The patient subsequently stated that these were the result of a disagreeable dream.

According to Garrison, it was largely due to the high character of such men as Warren and Bigelow that anesthesia produced by ether was instituted all over the world. Warren conceived it to be his duty to introduce the use of anesthesia into the practice of hospitals, but learned that Morton intended to obtain an exclusive patent for its use.* On consultation with Hayward, Warren came to the conclusion that since the ethics of medicine forbade physicians to conceal any useful discovery, further use of this new invention could not be encouraged, since it was not known of what it was made and since by patent it was prohibited

* It would appear that, in spite of Morton's jealous guarding of his secret, some physicians strongly suspected the true nature of his anesthetic agent. Dr. J. D. Mansfield of South Reading, Massachusetts (Boston M. & S. J. 35:424-425 [Dec. 23], 1846) in a letter dated November 10, 1846, said that he himself had had experience "in a social party" with a mixture composed of "sulph. ether, water and morphine, with a few drops of diluted sulphuric acid. This mixture was inhaled through a common retort, with a ground stopper at the apex of the globe. The effects which it had on those who inhaled it were similar, if not identical, with those produced by the vapor now so much in vogue." Dr. Mansfield was sharply critical of Morton's decision to patent his anesthetic agent, as were several other persons. But in the fifth edition of Morton's Letheon (copy in the New York Academy of Medicine Library), a letter from a noted Washington lawyer, Charles M. Keller, is reprinted. This letter is dated Jan. 5, 1847. Mr. Keller said that in his opinion it was just as legal to patent Letheon as it was to patent Watt's invention of the steam engine. Daniel Webster endorsed Mr. Keller's opinion, saying (Feb. 19, 1847): "I concur in the foregoing opinion, entirely; entertaining no doubt that Dr. Morton's discovery is a new and useful art, and as such the proper subject of a patent."
[Fig. 14] JOHN SNOW, the first physician to devote his full time to anesthesia. Reproduced from the Asclepiad, 1887, vol. 4.
[Fig. 15] SIR JAMES YOUNG SIMPSON. Reproduced from Gordon, H. L.: *Sir James Young Simpson and chloroform*. London, T. Fisher Unwin, 1897.
From Priestley to Morton

from being used freely. Morton became much alarmed at this
turn of events, and declared his willingness to make known the
agent employed and to supply assistance in administration of it
whenever called on to do so.

On October 30, 1846, Morton requested a list from Dr. Warren of all hospitals and charitable institutions in the country,
so that he might present them with the use of his new alleviator
of pain. Apparently this was done, and operations conducted on
patients anesthetized with ether became established at the Mass-
sachusetts General Hospital, and subsequently in other hospitals
throughout the country.

The first thorough account of the use of sulfuric etherization
was read by Henry Jacob Bigelow, one of the surgeons of the
Massachusetts General Hospital, on November 9, 1846, before
the Boston Society of Medical Improvement. It was subse-
quently published in the Boston Medical and Surgical Journal for
November 18, 1846, and at once provoked from the Philadelphia
Medical Examiner the much-quoted attack on Boston physicians
on the score that they were giving succor to quackery and that if
such actions continued, “Physicians and quacks will soon con-
stitute one fraternity.”

Stimulated by the appearance of this paper by Dr. Bigelow,
Dr. F. Dana, Jr., of Boston, sent to the Boston Medical and Sur-
gical Journal a spirited defense of mesmerism, in which he said
that mesmerism had been tested much longer than anesthesia
produced by sulfuric ether. He referred to the work of Elliotson
in England (previously mentioned herein), said that the Section
on Medicine of the Royal Academy of France had approved
mesmerism in 1831, and claimed that Baron Cuvier, Gabriel
Andral, François Broussais and Matthew Baillie all had strongly
approved mesmerism. The Boston Medical and Surgical Journal,
however, always had been contemptuous of mesmerism.

The use of anesthesia developed very rapidly in Europe.
Ether was administered in Paris on December 15, and in London
on December 19, 1846. On December 21 anesthesia was as-
sured a prominent place in the world when Robert Liston

[29]
The History of Surgical Anesthesia

performed his first operation in which anesthesia was produced by ether.

Meanwhile Oliver Wendell Holmes in a letter to Morton* suggested the name “anæsthesia” for the condition and “anæsthetic” for the adjective as follows:

* This was first printed in the 2nd edition, 2nd issue of E. Warren’s Some Account of the Letheon. See Dr. Fulton’s Appendix, p. 182.

Osler† said that Withington told him that the word was used “first in Plato (Timaeus) and is used by Dioscorides in the modern sense.” It was used, in 1718, by J. B. Quistorpius28 in the title “De Anaesthesia.” It first appeared in English in N. Bailey’s dictionary of 1721 as “Anaisthesia, a loss or Defect of Sense, as in such as have the Palsy or are blasted.”

The following testimony by Daniel Webster (from a photo-static reproduction in the Clendening Library) in a letter written by him to Morton is an important opinion concerning Morton’s contribution:

† See Good’s Nosology, p. 259.
The Acceptance of Anesthesia

Dr. W. T. G. Morton, Washington, Dec. 20, 1851

Dear Sir,

In reply to your letter of the 17th Inst. I would say that having been called on, on a previous occasion, to examine the question of the discovery of the application of ether in surgical operations, I then formed the opinion, which I have since seen no reason to change, that the merit of that great discovery belonged to you, and I had supposed that the reports of the Trustees of the Hospital, and of the Committee of the House of Representatives of the U. S. were conclusive on this point.

The gentlemen connected with the Hospital, are well known to me, as of the highest character, and they possessed at the time of the investigation, every facility, for ascertaining all the facts in the case.

The Committee of the House were, I believe, unanimous in awarding to you the merit of having made the first practical application of ether, and a majority, by their report, awarded to you, the entire credit of the discovery.

Very respectfully
Your obd. svt.

(signed) DANL WEBSTER

Morton forsook the practice of dentistry and discontinued his medical courses at Harvard in order to devote his full time to anesthesia. Without doubt he therefore can be considered to be the first professional anesthetist. The first qualified physician who devoted his full time to anesthesia was John Snow of London (fig. 14).

John Snow was licensed as a member of the Royal College of Surgeons in 1838. In 1843 he received the degree of Bachelor of Medicine from the University of London, and in 1844 he was granted the degree of Doctor of Medicine by the same university. Snow had for some time been interested in gases, and when late in the year of 1846 the news arrived from America that surgical operations could be performed without pain if patients previously submitted to the inhalation of sulfuric ether, he immediately became attentive.

[31]
The History of Surgical Anesthesia

According to Richardson (p. xiv, ref. 34), the first attempts at the production of anesthesia by the inhalation of ether in England* "were not so successful as to astonish all of the surgeons, or to recommend etherization as a common practice. The distrust arose from the manner in which the agent was administered. Dr. Snow at once detected this circumstance; and, as he explains in the pages of the work now in the hands of the reader, remedied the mistake by making an improved inhaler."

Equipped with his new inhaler, Snow was soon administering ether to the outpatients of St. George’s Hospital, London, for the prevention of pain in the extraction of teeth. Snow’s success in the production of anesthesia for dental operations was noticed by a Dr. Fuller of Manchester Square. Fuller remarked to his colleagues on the superiority of Snow’s method of the administration of ether over the method currently employed. As a consequence, Snow was invited to administer ether for major surgical operations at St. George’s Hospital. He began to do so on January 28, 1847. Later he administered ether at the University College Hospital for Robert Liston, the great English surgeon. Liston appreciated the efforts of his anesthetist and soon Snow became the leading anesthetist in London.

On January 19, 1847, Sir James Young Simpson (fig. 15) first used ether in his obstetric practice. About this time, as has been mentioned earlier, Long of Georgia was also using ether in obstetrics. According to Thoms, the first production of anesthésie à la reine† (that is, the administration of ether between each pain in natural labor) occurred in the United States. Dr. Nathan Colley Keep of Boston reported his use of this procedure in a letter which was published in the Boston Medical and Surgical Journal, issue of April 14, 1847.

Because of the disagreeable qualities of ether, such as its per-

* On January 12, 1847, Joseph-François Malgaigne related to the French Academy of Medicine his favorable experiences in four of five cases where he had operated using ether as the anesthetic agent. (See Malgaigne: [Communications sur l’emploi d’ éther] Bull. de l’Acad. Roy. de Méd. 12:262-264 (Jan. 12) 1847.) Six days later Alfred-Armand-Louis-Marie Velpeau reported to the French Academy of Science his observations, which were not at all favorable. (See "Remarques de M. Velpeau à l’occasion des précédentes communications." Compt. rend. Acad. d. sc. 24:76-78 (Jan. 18) 1847.)
† Anesthésie à la reine, literally "anesthesia in the manner of that used for the queen."
The Acceptance of Anesthesia

Simpson searched for different agents with which to replace ether. Among those he tried on himself and his associates were the chloride of carbon, acetone, nitric ether, benzine, the vapor of iodoform and chloroform. Of all the agents he tried, chloroform was the one that seemed to be the most suitable. He campaigned vigorously for its use.

The discovery of this important anesthetic agent occurred in 1831. During that year it was described independently by Samuel Guthrie of Sacket Harbor, New York, Eugène Soubeiran of France and Justus von Liebig of Germany. According to Robinson, Soubeiran’s first article on chloroform was written for the October 1831 issue of Annales de chimie et de physique. Liebig’s initial communication was a note in Poggendorf’s Annalen for November, 1831. Guthrie’s announcement appeared in Silliman’s Quarterly for October, 1831, which did not make its appearance, however, until January, 1832. The leading physical and chemical properties of chloroform were described by Jean Baptiste Dumas in 1835. Dumas bestowed on the drug its formula and name. In March, 1847, the French physiologist, Flourens, proved that the inhalation of chloroform caused in animals the same temporary type of anesthesia caused by the inhalation of ether.

The use of chloroform was suggested to Simpson by David Waldie, a chemist of Liverpool. On November 4, 1847, Simpson and his assistants, Drs. Keith and Duncan, inhaled it.* Satisfied with these preliminary experiments, Dr. Simpson at once began to use chloroform in his obstetric practice. On the tenth of the same month (November) the use of chloroform analgesia in obstetrics was made known by Simpson in an address before the Medico-Chirurgical Society of Edinburgh.

The Scottish Calvinist clergy and others objected to Simpson’s use of chloroform to prevent the pain of childbirth. They contended that this pain should be endured with patience and fortitude. Many influential members of the medical profession ob-

* According to Clark, Dr. Matthews Duncan tried chloroform a day before Simpson and his colleagues inhaled it.
The Acceptance of Anesthesia

jected to the use of analgesia in obstetrics, including Charles D. Meigs of Philadelphia, Francis H. Rainsbotham of the British Isles and Friedrich W. Scanzoni of Germany. Simpson waged a successful campaign in behalf of the use of analgesia in obstetrics. When his adversaries quoted the Bible to show that pain was a fore-ordained penalty, Simpson quoted the Scriptures (Genesis, II:21) to prove that God was the first anesthetist (see frontispiece).

THE

TRANSACTIONS

OF THE

AMERICAN

MEDICAL ASSOCIATION.

INSTITUTED 1847

VOL. I.

1848

PHILADELPHIA:
PRINTED FOR THE ASSOCIATION,
BY T. K. AND T. O. COLLINS.
1848.

[Fig. 16] Title page of the transactions of the first meeting of the American Medical Association. These transactions gave much prominence to anesthesia.
The Acceptance of Anesthesia

Over two centuries previous, Du Bartas,* the French Huguenot poet, in his famous encyclopedic poem *La Semaine* (1579) translated into English by Joshua Sylvester had alluded to anesthesia in his interpretation of the creation of Eve as follows:

> Even as a Surgeon, minding off-to-cut
> Som cureless limb; before in use he put
> His violent Engins on the vitious member,
> Bringeth his Patient in a senseless slumber,
> And griefless then (guided by use and Art)
> To save the whole, saves off th'infected part:
> So, God empal'd our Grandfires lively look,
> Through all his bones a deadly chills strook,
> Seli'd vp his sparkling eyes with Iron bands,
> Led down his feet (almost) to Lethe Sands:
> In briefe, so numm'd his Soule's and Body's sense,
> That (without pain) opening his side, from thence
> Hee tooke a rib, which rarely He refin'd,
> And thereof made the Mother of Mankind:

The quarrel lasted for several years, but when Queen Victoria (fig. 17) accepted the use of Simpson’s chloroform on April 7, 1853, during the birth of her eighth child, Prince Leopold, the continued use of chloroform in obstetrics was assured. Queen Victoria was attended during this confinement by Sir James Clark. John Snow served as analgesist. Chloroform was administered on a handkerchief. The drug was given intermittently and inhalation analgesia was induced for the patient, who was not unconscious at any time.†

In May of the same year in which Morton demonstrated the practicability of ether anesthesia (1846), a group of physicians met in New York City to hold a national medical convention.

† There is a particularly splendid story about John Snow’s method of sidestepping awkward questions when asked about his treatment of the Queen. One obstetrical patient to whom he was administering chloroform became very talkative during the period of excitement and declared she would inhale no more of the vapor unless she were told word for word what the Queen had said when she was taking it. “Her Majesty,” replied Dr. Snow, “asked no questions until she had breathed very much longer than you have; and if you will only go on in loyal imitation, I will tell you everything.” The patient followed Dr. Snow’s request. In a few seconds she forgot about the Queen. By the time she had come to her clever witness had left the hospital. See Griffith, H. R.: “John Snow, Pioneer Specialist in Anesthesia.” Anesth. and Analg. 13:45-51 (Mar.-Apr.) 1934.
The History of Surgical Anesthesia

Delegates from medical societies and colleges of many parts of the United States were present. This was a successful meeting and it was deemed expedient for the medical profession of the country to reconvene the following year. At this meeting, held in Philadelphia, it was agreed that the name of the new organization be the American Medical Association. Standing committees were appointed to make annual reports. Such were the preludes to the first annual meeting of the American Medical Association, held in Baltimore in May, 1848.

At this first organized meeting of the American Medical Association, much prominence was given to the subject of anesthesia. This is attested by the report of the Committee on Surgery.42

After a discussion of the value of keeping statistical records and an illuminating account of many operations, the committee considered in detail the various anesthetic agents. The report of the committee is a most important co-eval record of the reaction of the medical profession to the introduction of anesthesia, and for that reason it will be considered somewhat in detail (fig. 16).

According to the report, some surgeons were afraid to use anesthesia in their surgical operations, feeling that the advantages afforded by the relief of pain might be offset by the risks involved:

The great question, which still divides medical opinion, is: Can the annulling of pain by anesthetic agents be produced without risk to life, or is the hazard so inconsiderable as to justify their employment in all cases where it is desirable to prevent the pain of surgical operations?

Apparently, even at this early date (1848), the authors of this report felt that a large group of surgeons were wholly in favor of anesthesia:

They look upon the dangers of etherization as so inconsiderable as to justify the induction of this state, prior to all surgical operations in which the pain is an important consideration, while they consider the advantages of anesthetic agents to be especially manifest in all extensive ones, involving life, where the nervous shock (which they believe lessened by them) might increase the risks of a fatal issue.

The authors did, however, admit that some surgeons "would
[Fig. 18] FRIEDRICH WILHELM SERTÜRNER who discovered morphine. Reproduced from München. med. Wchnschr. 71:77 (Jan. 18) 1924.
restrict the use of these agents to severe operations, and discour- age their general employment, under a belief that their full effect cannot be attained without a degree of danger which would render their indiscriminate use unjustifiable. While a small proportion of the profession still object altogether to anaesthetics as dangerous and hurtful in their tendency . . .”

Mention is made in the report that after the introduction of ether anesthesia in Boston it was not until several months later that the method became generally popular in other communities in the United States. The favorable reports of its use in Boston and in Europe made for the more extensive use of ether anesthesia in American communities in 1847 and 1848.

The dangers of etherization were also considered. In some cases it was thought that convulsions, prolonged stupor, intense cerebral excitement, alarming depression of the vital powers and asphyxia apparently were caused by the inhalation of ether and chloroform. Secondary effects attributed to inhalation in a few cases were bronchitis, pneumonia and inflammation of the brain. Interestingly enough, according to this report (p. 190), ether was considered to be a safer drug than chloroform.

Apparently Dr. Henry W. Williams of Boston in 1850 was the first to use the anesthetic agents, ether or chloroform, prior to ophthalmic surgery.

Gradually, other anesthetic agents were developed and many improvements were made in the administration of them. These factors contributed to the welfare of the patient.

D—Local, Regional and Spinal Anesthesia

To discuss another type of anesthesia, in which lack of sensation is obtained by the subcutaneous injection of certain substances, it will be necessary first to refer to certain pioneer efforts made prior to the period at which this narrative has now arrived.

The unripe capsules of the white poppy when pressed and solidified form opium. This famous vegetable narcotic agent, as mentioned previously, was one of the important agents of the ancients in their production of artificial sleep. But, like the action of so many other drugs, the action of the drug was unpredictable.
On some patients large doses of this drug apparently had little effect. The action of this drug on other patients often was very dangerous, and might even result in the patient's death. Because of this danger the more conservative members of the medical profession refrained from using it.

To bring about the safe use of this drug, Friedrich Wilhelm Sertürner (fig. 18) of Paderborn, Westphalia, a chemist, devoted much of his time to research and experimentation. After experimenting with crude opium, mixing it with the better known solvents, he at one time (1806) poured liquid ammonia over the opium. This produced a white crystal residue.* Sertürner, after experimenting on himself, found this residue, an alkaloid, to be the cause of the soporificity of opium. He named the drug "morphium" (later changed to "morphia," "morphine" and "morphin") after the Greek god of dreams, Morpheus.43

Lafargue, in 1836,44 came upon a new way to deaden pain. Using a vaccination lancet, he injected morphine paste subcutaneously near the affected part, with beneficial results. In 1839, Drs. Isaac E. Taylor and James A. Washington of New York began the practice of hypodermic medication.44 These physicians punctured the skin with a lancet and, by means of Anel's eye syringe, forced a solution of morphine under the skin for the local relief of pain. In 1845, F. Rynd45 of Edinburgh also carried out a similar means of subcutaneous medication. In 1853, Dr. Alexander Wood of Edinburgh injected a solution of morphine under the skin in the vicinity of a painful part, affording relief from pain.

In 1853 Wood devised the modern type of the metallic hollow needle,† and in that same year Charles Gabriel Pravaz attached an improved hollow needle to a specially constructed syringe. On the continent this is called the "Pravaz" syringe, in honor of its inventor. In England and the United States it is commonly referred to as the "hypodermic syringe." Thus the world was

* In 1804, Seguin discovered the same substance but did not fully investigate it.
† The first "hollow needles" were quills. This was the type used by Sir Christopher Wren in 1656 in his intravenous injections of opium and crocus metallorum. Sigismund Elsholtz probably used a quill in 1665 also for his injections of opiates. (See p. 54.)
assured of the full benefit of the administration of morphine.

According to Archer, W. W. Greene of the Maine Medical School as early as 1868 advised the hypodermic use of morphine during inhalation anesthesia. He felt that his procedure prevented shock, delirium, nausea, and shortened the anesthetic influence. In 1869, according to Fülöp-Miller (p. 355), the French physiologist, Claude Bernard, also advocated the same procedure.

Spessa of Italy in 1871 injected a solution of morphine into a fistulous tract before surgical intervention, claiming that by doing this he was able to prevent pain during surgical operations.

The use of cocaine in anesthesia was the next important development. Its history is most interesting. According to Bumpus, in ancient times the natives of Peru knew about the anesthetic qualities of the coca plant. During the severe surgical procedure of trephination they obtained local anesthesia by chewing the leaves of the coca plant and allowing the resulting saliva to run into the fresh incision.* The plant was also important in the religious and political lives of these people. Braun quoted Noviny as saying that the coca plant was regarded as a gift from God which "satiated the hungry, gave renewed energy to the tired and weary, and caused the unfortunate to forget sorrows."

While on a trip to South America, Scherzer, according to Braun, noticed that the leaves numbed the tongue when they were chewed. He brought back with him a large quantity of these leaves and was the first to make a report in the literature concerning their anesthetic qualities.

In 1855, Gaedicke of Germany isolated an alkaloid of the leaves of this plant, naming it erythroxyl. A few years later (1860) Albert Niemann of Germany obtained the alkaloid of coca leaves in crystalline form and named it "cocaine." He also reported the numbing effect of this drug on the tongue.

Not much attention was paid to these important discoveries

* Roy L. Moodie was probably the first to point this out. See his Paleopathology, an Introduction to the Study of Ancient Evidences of Disease (Urbana, University of Illinois Press, 1923). This book has an imaginative frontispiece by Tom Jones illustrating the practice.

† The U. S. Dispensatory gives the year 1844 and the investigator's name as Gaedken.
The History of Surgical Anesthesia

until 1873.* In that year Alexander Bennett demonstrated the anesthetic properties of cocaine. Five years later (1878) Vasili Konstantinovich von Anrep made a thorough study of the pharmacologic properties of cocaine. Von Anrep injected a weak solution of cocaine under the skin of his own arm. He experienced a sense of warmness which was followed by anesthesia that lasted for about thirty-five minutes. This led him to suggest the possibility of the employment of cocaine as a local anesthetic agent. He also experimented on animals. He injected a solution of cocaine into the conjunctival sac of animals, but he noticed its dilatory effect on the pupil only. However, Coupart and Borderan, in 1880, were able to demonstrate the loss of the corneal reflex in animals after the use of solutions of cocaine. According to Braun, Fauvel, Saglia, and others had already learned to use coca leaves and their extracts in the treatment of painful diseases of the larynx and pharynx.

The development and use of cocaine as a local anesthetic agent was chiefly the work of Carl Koller (fig. 19). When Koller was house surgeon at the Vienna General Hospital, his friend Sigmund Freud was studying the possibility of curing patients addicted to morphine by treating them with cocaine. Both Koller and Freud studied the physiologic aspects of cocaine. Freud turned his attention away from these investigations. Koller, however, continued his studies. He injected a weak solution of cocaine into the eye of a frog and noticed that the eye became insensitive to pain. On September 15, 1884, Koller reported his observations to the Ophthalmological Congress held in Heidelberg. Soon afterward cocainization of the eye for the production of local anesthesia was generally adopted.

Not long after the acceptance of cocaine for the production of local anesthesia for surgery of the eye, cocaine was extensively used in laryngology and rhinology. Otis and Knapp used cocaine anesthesia for operations in the male urethra, and Fraenkel carried out experiments in which application of the agent to gynecology.
Local, Regional and Spinal Anesthesia

cology was demonstrated. Cocaine was also injected in solution into the tissues, and became extensively used in dentistry and in general surgery. William S. Halsted* of the John Hopkins Hospital in 1884 injected cocaine into nerve trunks, thus obtaining “conduction” anesthesia in peripheral regions. The nerve he first blocked was the mandibular. In 1922 the American Dental Association honored Dr. Halsted for his original researches, which greatly improved the use of anesthesia in oral surgery.

In 1885, J. Leonard Corning (fig. 20)† of New York, having shown experimentally that cocaine had a prolonged anesthetic effect when it was administered subcutaneously, experimented on the possibilities of spinal anesthesia.‡ He injected hydrochlorate of cocaine into the space situated between the spinous processes of two of the inferior dorsal vertebrae in a dog. He obtained epidural† anesthesia, and although this procedure did not affect the anterior extremities, he was able to obtain anesthesia of the hind legs. To Corning this suggested the local action of the drug. He next worked with a man who had long been suffering from spinal weakness and seminal incontinence. This time he injected a solution of hydrochlorate of cocaine between the spinous processes of the eleventh and twelfth thoracic vertebrae. Anesthesia of the legs and genitalia resulted. Encouraged by his results, Corning§ in 1888 injected hydrochlorate of cocaine in the vicinity of the spinal cord. According to Bumpus,¶ Corning was the originator of regional anesthesia. In 1887, he injected presumably a solution of cocaine around the median cutaneous antibrachii nerve, producing anesthesia of the skin supplied by it.

In 1891 Quincke¶ demonstrated the usefulness of spinal puncture as a diagnostic procedure.‡ Although he was unaware

† There are those who believe that Corning obtained spinal and not epidural anesthesia. His statement is as follows: “Experiment I. This was performed on a young dog . . . I injected twenty minims of a two-per-cent solution of the hydrochlorate of cocaine into the space situated between the spinous processes of two of the inferior dorsal vertebrae. Five minutes after the injection there were evidences of marked inco-ordination in the posterior extremities . . . A few minutes later there was marked evidence of weakness in the hind legs, but there were no signs whatever of feebleness in the anterior extremities.” (See Ref. 52.)
‡ Dr. Essex Wynter of England discovered lumbar puncture, independently, at about this time.
The History of Surgical Anesthesia

of the possibilities of spinal anesthesia, he showed that the introduction of a needle through the dura was feasible. After the work of Corning and Quincke, August Bier of Greifswald, Germany, in 1898 produced true spinal anesthesia in animals and then in himself and an assistant, Hildebrandt, by injecting the spinal canal with a solution of cocaine. He was soon using it for patients with complete success. Theodore Tuffier, working independently of Bier, produced spinal anesthesia by injecting a solution of cocaine between the third and fourth lumbar spaces. Many other investigators reported their observations and spinal anesthesia became established on a firm basis.

A new method of anesthesia was contributed by Carl Ludwig Schleich. Before the German Congress of Surgeons in 1892, he demonstrated infiltration anesthesia by intracutaneous injection.* In 1890, according to De Takáts, Réclus, Pernice and Kummer had earlier made use of infiltration anesthesia. But Schleich apparently achieved better results by the use of a very diluted solution of cocaine. Schleich’s method was used in 1894 in the United States, as reported by Würdemann. In 1896 Bransford Lewis reported his use of infiltration anesthesia.

In 1897 Braun demonstrated that the toxicity of cocaine was in direct ratio to its rate of absorption and that its efficiency was in reverse ratio. He therefore recommended the addition of epinephrine to cocaine to decrease the rate of absorption and to increase the duration of anesthesia.

Meanwhile, many investigators had developed derivatives of cocaine that were not so toxic. In 1891 Giesel isolated tropacocaine. Fourneau introduced stovaine† in 1903. Einhorn, in 1904, discovered novocaine (procaine hydrochloride). Many other similar drugs were later developed.

Apparently the first surgeons in the United States to use spinal anesthesia were Tait and Caglieri of San Francisco. On October 26, 1899, they performed osteotomy of the tibia with the patient under spinal anesthesia.

† So named because its discoverer's name means stove.

[42]
Local, Regional and Spinal Anesthesia

The first American to report on true spinal anesthesia was Dr. Rudolph Matas⁵⁹ (fig. 22) of New Orleans. On November 10, 1899, he first anesthetized a patient by what he termed "the spinal subarachnoid method." According to Souchon,⁶⁰ Matas has made several original contributions to the development of anesthesia. He devised an apparatus for massive infiltration anesthesia; in January, 1898, he operated on a patient anesthetized by intraneural and paraneural infiltration with cocaine and other drugs, obtaining anesthesia of the forearm and hand by this method. Matas developed a method of anesthesia of the region supplied by the second division (maxillary nerve) of the trigeminal nerve by blocking the nerve at the foramen rotundum. On April 29, 1899, using this type of anesthesia, he removed both maxillae of a patient for carcinoma. That same year (1899) he succeeded in obtaining regional anesthesia by blocking the second and third divisions of the trigeminal nerve for operations on the jaw. In 1938 Dr. Matas was awarded the first Distinguished Service Medal of the American Medical Association at its annual meeting. Wayne Babcock⁶¹ of Philadelphia early in his career (1904) began to use spinal anesthesia. He has consistently advocated this type of anesthesia in selected cases. Bourne⁶² and his associates have recently recommended spinal anesthesia for thoracic operations. But this use had been previously reported by Harlan F. Newton⁶²⁹ of Boston and Harry J. Shields⁶²⁸ of Toronto. Their first cases were operated on in 1931.

According to Matas,⁵⁹ Dr. George Washington Crile (fig. 23) of Cleveland at an early date practiced the direct open injection of nerve trunks with cocaine to produce anesthesia. On May 18, 1897, he amputated a patient’s leg without causing pain after injecting the sciatic and anterior crural nerves. Dr. Harvey Cushing⁶³ and others in Dr. Halsted’s clinic at the Johns Hopkins Hospital used this principle that same year (1897), anesthetizing the inguinal region for the radical treatment of hernia. As has been mentioned earlier herein, Halsted in 1884 had obtained conduction anesthesia by injecting the nerve trunks with cocaine.

The use of peridural or epidural anesthesia, first suggested by
The History of Surgical Anesthesia

Corning in 1885, is relatively new in the United States but it has been widely used in Europe and South America. The method as pointed out by Charles B. Odom is a form of block anesthesia and derives its name from the space into which the anesthetic solution is injected. As the epidural space extends the entire length of the spinal canal, it is possible through a single puncture to achieve analgesia to carry out operations below the chin without puncturing the dura. This type of anesthesia was independently thought of by Fidel Pagés of Spain in 1920. He used it to anesthetize the abdomen and chest. His untimely death (1921) cut short his work on this subject. In 1931, A. M. Dogliotti reported on peridural anesthesia as his discovery, unaware of Corning’s and of Pagés’s work.

E—Anoci-association; Refrigeration Anesthesia

Dr. Crile and his associates at the H. K. Cushing Laboratory at Western Reserve University in Cleveland, Ohio, made another contribution to anesthesiology: the development of a method of combining local anesthesia with general anesthesia, first reported in 1908 and known as “anoci-association” or “anociation.” Before a general anesthetic agent was administered they blocked off the nerve supply to the field of operation by the local or intraneural infiltration of procaine hydrochloride (novocaine). When this technic was combined with preliminary treatment involving special management of the patient (applied psychology) and the use of narcotic agents it was found that fear, pain, shock and postoperative manifestations were, to a large extent, controlled.

The use of cold as an anesthetic agent has been mentioned earlier herein. Sir Benjamin Ward Richardson, a pupil of John Snow, according to Leake, improved on this type of anesthesia.

* Richardson made many important contributions to anesthesia. He brought into use no less than fourteen anesthetics. Of these methylene bichloride was the most employed. He invented the first double valved mouthpiece for use in chloroform anesthesia. (See Richardson, Sir Benjamin Ward: In Dictionary of National Biography, v. 22, Supplement, pp. 1169-1170.) Early in his career he made researches on gases, and his studies on anesthetic narcotism led him to anticipate what he afterwards made practicable by means of the lethal chamber—the painless extinction of lower animal life. Among the therapeutic substances he introduced into medical practice were hydrogen peroxide, sodium ethylate, the colloids and amyl nitrite. (See Martin, Mrs. George: “Life of Sir Benjamin Ward Richardson by his daughter...” In Richardson, B. W.: Disciples of Aesculapius. London, Hutchinson & Co., 1900, v. 1, pp. 1-12.)
[Fig. 19] CARL KOLLER.
[Fig. 20] J. LEONARD CORNING. Reproduced by courtesy of the New York Academy of Medicine.
in 1867. He introduced the ether spray for the purpose of producing local anesthesia. This was found to be satisfactory for many minor operations. It was later modified by the use of ethyl chloride which, because it evaporates more quickly, is more effective than ether in this particular technic.

Refrigeration anesthesia in amputations, employed by Severino in the seventeenth century, and known to have been used by Larrey in the nineteenth century as mentioned earlier herein, has recently proven to be a successful measure. Frederick M. Allen of New York read his first paper on this subject in August, 1941, before the meeting of the International College of Surgeons in Mexico City. Dr. Allen used cracked ice, snow ice or ice-water as the sole anesthetic for forty-three amputations of lower extremities. Dr. Allen could find no evidence of shock during the period of reduced temperature before, during, and after these painless operations. Neither the pulse nor the blood pressure was disturbed. However, healing was found to be slower than with other methods. In September, 1943, Drs. Harry E. Mock and Harry Mock, Jr., published a review article covering 101 cases already reported in the literature plus seventeen of their own. Their experience was similar to Allen’s and left them greatly in favor of this type of anesthesia.

F—Rectal Anesthesia

The modern production of anesthesia by the intestinal route was attempted shortly after sulfuric ether became more generally available as an inhalation anesthetic agent. Apparently, Nikolas Iwanowitch Pirogoff (fig. 21), the famous Russian surgeon, first described this method in 1847.* Sutton said that Pirogoff’s original plan was to introduce liquid ether into the rectum. Magendie warned him that this might be a dangerous procedure. Pirogoff then devised a method of vaporizing the ether by heating it and administering it in its volatile form. Pirogoff was so enthusiastic about this method

that he thought it would supplant the inhalation method. Roux, Y’Yhede, and Dupuy reported that same year on the production in animals of complete anesthesia by way of the rectum.* Liquid ether, pure or in aqueous mixture, was employed. Nevertheless, in spite of Pirogoff’s enthusiasm, there does not seem to be further mention in the medical literature concerning this type of anesthesia until 1884.

In that year Daniel Mollière of France reintroduced anesthesia produced by the administration of ether by way of the rectum. At first he employed a hand bellows which forced ether vapor into the intestine. Later, he warmed the ether by placing

RECHERCHES

PRATIQUES ET PHYSIOLOGIQUES

SUR

L’ÉTHÉRISATION

N. PIROGOFF

Docteur en Médecine; Académicien; Professeur à l’Académie Médico-Chirurgicale de St.-Pétersbourg; Chirurgien en chef du second Hôpital militaire; Chef des travaux anatomiques; Chirurgien consultant aux hôpitaux d’Oboukhow, de St. Marie-Madeleine et de St. Pierre et St. Paul; Conseiller d’État, Membre du Conseil Médical et Membre Correspondant de l’Académie des Sciences.

ST. PETERSBOURG.

IMPRIERIE FRANÇAISE. TROIÈME PÉRIOLOE. A° 3.

1847.

[Fig. 21] Title page of Pirogoff’s book wherein anesthesia by the intestinal route was first described. Reproduced by courtesy of the Army Medical Library.

* For an illuminating account of the contribution of Marc Dupuy, as well as some contemporary reactions to Pirogoff’s work, see Proskauer, Curt: “The simultaneous discovery of rectal anesthesia by Marc Dupuy and Nikolai Ivanovich Pirogoff.” J. Hist. Medicine and Allied Sciences 2:379-384 (Summer) 1947.
the container in a water bath at a temperature of 120° F. (48.8° C.). The resulting pressure forced the ether vapor into the intestine. According to Sutton, in that same year (1884), Yver- sen, Hunter, Bull, Weir, Wancher, and Post recorded their experiences with this method. These observers reported some unfavorable results, including more or less pronounced diarrhea and melena and one death. Kleiman said that this type of anesthesia produced severe injuries to the mucosa.

The discouraging results aforementioned again led to the abandonment of anesthesia produced by the colonic absorption of ether. However, in 1903, J. H. Cunningham revived the method. He introduced a new technic in which air was utilized as a means of transporting ether vapor into the intestine. With Frank Lahey in 1905 he published his first article concerning the new method. Walter S. Sutton improved on the work of Cunningham, and in 1910 published the results obtained with the method in a series of 140 cases. He recommended the use of oxygen instead of air as a vehicle, and developed a more satisfactory apparatus than had been available for the administration of this type of anesthesia.

On August 11, 1913, James Tayloe Gwathmey (fig. 24) read his preliminary communication on oil-ether colonic anesthesia before the seventeenth meeting of the International Medical Congress in London. He referred to his experiments with animals as well as to some clinical results. He was able to overcome irritation of the mucosa by the addition of Carron oil to the ether, by giving the mixture as an enema, slowly introduced into the rectum. This type of anesthesia was remarkably successful. The first public demonstration of oil-ether colonic anesthesia was made on September 27, 1913, at the People's Hospital in New York City, on one of Dr. I. M. Rothenberg’s patients, Dr. Solomon Rothenberg operating. The work was continued at other hospitals in New York City, and spread to other sections of the United States and to other countries. On November 20, 1913, Dr. Gwathmey read a paper before the New York Society of Anesthetists (now the American Society of Anesthetists),
demonstrating the continued use of oil-ether anesthesia in about 100 cases. Olive oil, being found more satisfactory, was substituted for Carron oil. In 1923, by reducing the amount of ether used in oil-ether colonic anesthesia, Gwathmey developed a successful method for the relief of pain during labor. In 1930, Gwathmey reported on 20,000 cases in which this method had been used successfully for the relief of the pain of childbirth. The final technic involved three intramuscular injections of magnesium sulfate, morphine sulfate being given with the first injection of magnesium sulfate, and a rectal instillation of a compound of quinine alkaloid, alcohol, ether, and petroleum liquid or olive oil. Another anesthetic agent found to be successful when administered by way of the rectum was tribromethyl alcohol in amylene hydrate (avertin). This agent was discovered by Eichholz in 1917 and first clinically employed by Butzengeiger in 1926.

G—Twilight Sleep

A type of analgesia once much in favor was "twilight sleep" for the relief of obstetric pain. According to Claye, von Steinbüchel of Graz, stimulated by the work of Schneiderlin and Korff on scopolamine-morphine, in 1902 used for the first time this type of analgesia in his obstetric practice. Another early worker in this field was C. J. Gauss who did much to extend the use of "twilight sleep." Von Steinbüchel found it possible, after premedication with scopolamine-morphine alone, to carry out such obstetric procedures as perineal suture, dilatation of the cervix by Bossi's method and sometimes delivery with forceps. In some cases it was necessary to repeat the hypodermic injection after not less than two hours. If the patient still felt pain, ether or chloroform was also given by inhalation. The significant contribution of von Steinbüchel, in this respect, was his discovery of how little inhalation anesthesia was required when the patient previously had had premedication with scopolamine-morphine. Because relief of pain was often inadequate, unfavorable influ-

Ethylene, Divinyl Oxide, Cyclopropane & Cyprome Ether

ences on uterine contractions were noticed, and asphyxia frequently was encountered among babies, "twilight sleep," although it was received with tremendous enthusiasm, is today not the analgesic agent of choice in obstetrics. On the other hand, however, its importance as preliminary medication prior to general anesthesia for surgical operations, as also reported by Crile, is now becoming of marked significance.

In the field of general anesthesia other agents were being developed. Some of these were not successful enough to warrant their inclusion herein. Others have been of decided importance. Of the agents of the latter group ethylene as an anesthetic agent has an interesting history.

Apparently ethylene, or olefiant gas, as it is referred to in the earlier literature, was first prepared by Becker, the exact date not being known. Another early investigator was Johannes Ingenhouss. According to Luckhardt and Lewis, Ingenhouss is referred to in Joseph Priestley's book: *Experiments and Observations Relating to Various Branches of Natural Philosophy* (London and Birmingham, 1779-86, 3 v.) as the first to prepare ethylene.

Hoping to discover a more satisfactory anesthetic agent than the ones in use, Thomas Nunneley, a surgeon of Leeds, reported in 1849 concerning the examination of some thirty-seven compounds. Nunneley concluded, however, that ethylene was not to be recommended as an anesthetic agent, because his results with this gas were so unsatisfactory. Coal gas, according to his experiments, was a superior agent. Nunneley did, however, report on the use of ethylene dichloride as an anesthetic agent, and apparently achieved more favorable results than those noted by Simpson, who also had used this preparation. Today, Nunneley* is chiefly remembered for his description of the anesthetic qualities

of a mixture of ether and an alcoholic solution of chloroform.41 This was named the “A. C. E. mixture” (1 part alcohol, 2 parts chloroform, 3 parts ether) and was a widely used agent in the middle and later parts of the nineteenth century. In reminiscing concerning his boyhood, W. J. Mayo86 described the use of the A. C. E. mixture in the surgical practice of his father, William Worrall Mayo. The anesthetist in this case was C. H. Mayo, at the early age of twelve years.

The next investigator to experiment with ethylene was the physiologist, Ludimar Hermann.87 In 1864 he noted its mildly intoxicating action. Davy and Müller also studied the effects of this gas. In 1876, Eulenberg presented experimental evidence to show the anesthetic qualities of ethylene. Franz Lüssem,88 in 1885, reported on some unsatisfactory results of experiments in which he had used a 75 per cent ethylene-oxygen mixture. These poor results were attributed to the presence, presumably, of carbon monoxide. Using a purer product, he anesthetized two dogs and a guinea-pig with an 80 per cent ethylene-oxygen mixture. He inhaled this mixture himself and after eighteen minutes noticed weakening of the arms and legs in addition to dizziness and uncertainty of gait.

About this time, according to Leake,69 Sir Benjamin Ward Richardson, who has been referred to herein, found ethylene to be an admirable agent for general anesthesia. He felt, however, that its gaseous state was a disadvantage.

Not much more attention was paid to ethylene as an anesthetic agent until Arno B. Luckhardt89 (fig. 25) and R. C. Thompson in 1918 gathered data which served to establish experimentally the anesthetic and analgesic qualities of a mixture of 80 per cent ethylene and 20 per cent oxygen. They began their experiments because of curiosity as to the effect of ethylene gas on animal protoplasm, stimulated by the work of William Crocker and Lee Irving Knight.90 Crocker and Knight, in 1908, had studied the effects of ethylene on carnations. That year carnation growers had met with severe losses on their shipment of flowers to Chicago. These flowers, when placed in greenhouses,
would “go to sleep” and buds showing petals would fail to open. Believing that illuminating gas was responsible for the damage to the flowers, these botanists of the Hull Botanical Laboratory studied the effect of the gas on the flowers. After much research they discovered that ethylene, which forms about 4 per cent of illuminating gas, was the chief offender.

Because of the toxic effect of ethylene on carnations, Luckhardt and Thompson studied its effects on animals. They were not able to demonstrate any toxic manifestations among laboratory animals, but did notice that ethylene had a marked anesthetic action. The first World War interrupted their studies, but in 1922, Luckhardt, working at this time with J. B. Carter, resumed the experiments. They confirmed the earlier unpublished data and extended their study. Satisfied with these investigations on various animals, Luckhardt and Carter next experimented on themselves and other volunteer workers. Later, they gave a private demonstration before an interested group of physicians and professional anesthetists at the University of Chicago. So well satisfied were the spectators as to the admirable qualities of ethylene as an anesthetic agent that in a short space of time (on March 14, 1923) ethylene, administered by Isabella Herb for the surgeon Arthur Dean Bevan, was used at the Presbyterian Hospital (Chicago) for general anesthesia. Not long thereafter, on April 27, 1923, Luckhardt and Carter reported on ethylene as a general anesthetic agent in 106 surgical operations.* Meanwhile Isabella Herb published her clinical study.

J. H. Cotton in 1917 in the Canadian Medical Association Journal reported data to show that ethylated ether had strong anesthetic and analgesic qualities, and William E. Brown, also of Canada, without knowledge of the work of Luckhardt and his colleagues, in March, 1923, published his preliminary communication in which experimental evidence on the value of ethylene as an anesthetic agent was presented.

After the development of the clinical use of ethylene, many

other general anesthetic agents were evolved. Chauncey D. Leake, of the University of California (fig. 27), well known for his pharmacologic studies on various anesthetic agents and his resulting discouragement of unsafe preparations, made an important hypothesis. Working with M. Y. Chen, Leake suggested that it might be interesting to prepare a compound consisting of a hybrid molecule utilizing the structural characteristics of ethylene and ethyl ether. It was the feeling of these investigators that this compound would be a general anesthetic agent which might give promising results. When this prediction was made, according to Leake, divinyl oxide was known only theoretically. Upon Leake's request, in 1930, Randolph Major and W. L. Ruigh, of Princeton University, sent him an impure sample of the aforementioned unsaturated ether. In 1931 they prepared pure divinyl oxide. After the pharmacologic studies of Leake, P. K. Knoefel and A. E. Guedel on the anesthetic action of divinyl oxide in animals, S. Gelfan and I. R. Bell of the University of Alberta demonstrated its safety as an anesthetic agent for human beings. It was first employed in cholecystectomy on an obese patient at the University of California Hospital in San Francisco in 1933. Dr. Dorothy Wood served as anesthetist.

Cyclopropane, another relatively new anesthetic agent, was discovered by August Freund in 1882. Freund noticed that propylene, an isomer of cyclopropane, was present as an impurity. Many years later (1928) G. H. W. Lucas and Velyien E. Henderson, searching for the cause of cardiac damage in propylene anesthesia, studied cyclopropane as a possible impurity of propylene. Cyclopropane was found not to be responsible for the cardiac damage. It was found to be, experimentally, a more potent anesthetic agent than propylene. In addition, it was demonstrated in laboratory animals that cyclopropane was rapid in its action and of slight toxicity in effective concentrations and that it could be rapidly eliminated. Henderson and Lucas continued their investigations. The pharmacologic action of cyclopropane was later investigated by M. H. Seevers, W. J. Meek, E. A. Rovenstine and J. A. Stiles of the University of Wiscon-
[Fig. 22] RUDOLPH MATAS.
[Fig. 23] GEORGE W. CRILE.
Intravenous Anesthesia &Related Procedures

Intravenous Anesthesia & Related Procedures

sin. Ralph M. Waters\(^{104}\) (fig. 28), head of the department of anesthesia of the same university, encouraged by the work of his associates, studied the anesthetic effects of this agent on animals. Next, Waters and his associates administered cyclopropane to each other, with satisfactory results. In 1930, they first administered it for surgical anesthesia. In October of 1933 a group of anesthetists from various parts of the country were invited to the University of Wisconsin to witness the results of this work. The demonstration met with success and the staff of the department of anesthesia of the University of Wisconsin\(^{105}\) published the first clinical report of the use of cyclopropane as a general anesthetic agent.

In 1939 it occurred to John C. Krantz, Jr., C. Jelleff Carr, Sylvan E. Forman, and William E. Evans, Jr.,\(^{106}\) of the department of pharmacology of the University of Maryland, that it would be of interest to prepare a hybrid molecule between ether and cyclopropane. These investigators succeeded in developing a method of synthesis for the convenient preparation of the aliphatic cyclopropyl ethers. The first member of the series that they were able to identify and consequently to prepare was cyclopropyl methyl ether. This agent they named “cyprone ether.” Results of their pharmacologic studies have shown that cyprone ether is a more potent anesthetic agent than ethyl ether. After these experimental investigations, which were satisfactory enough to warrant clinical trial of the agent concerned, a volunteer hospital patient was operated on under anesthesia produced by cyprone ether. The patient’s recovery was uneventful. In 1940, Constance Black, George E. Shannon and John C. Krantz, Jr.,\(^{107}\) reported on the first twenty-five surgical operations performed with the patients under the influence of anesthesia produced by cyprone ether.

I—Intravenous Anesthesia and Related Procedures

The discovery of a method of conveying liquors directly into the blood stream is attributed to Sir Christopher Wren, the famous
The History of Surgical Anesthesia

architect (fig. 29), by his contemporaries, Oldenburg108 and Clarck.109 The first experiments were carried out in 1656, at the home of the French ambassador, the Duc de Bordeaux. Wren was at that time professor of astronomy at the University of Oxford. Wren ligated the veins of a large, lean dog. Having made an opening on the side of the ligature toward the heart, he then introduced a syringe into this opening. The syringe, formed from an animal bladder to which a quill had been attached, was filled with a solution containing opium in this case and an infusion of crocus metallorum in another. Wren found that opium, administered intravenously, soon stupefied but did not kill the dog. A large dose of crocus metallorum, however, similarly administered to another dog, induced vomiting and death. Wren probably was unaware of the anesthetic results of his intravenous administration of opium, for his investigation was made mainly in the hope of discovering a new therapeutic procedure. According to Sturgis,110 Wren also injected beer and wine into the bloodstream, probably to determine their therapeutic effects.

Apparently, as suggested by Jarman,111 the first genuine attempt at intravenous anesthesia was made in 1665. At that date Sigismund Elsholtz injected a solution of an opiate to obtain insensibility. At about this time (February, 1665) Richard Lower (fig. 30) transfused blood to animals for the first known time. On June 15, 1667, Jean-Baptiste Denis of Montpellier with the help of a Dr. Emmerez first transfused blood to man. The account of Dr. Lower’s experiments112 was published in the Philosophical Transactions of the Royal Society for December 17, 1666, and Dr. Denis’ experiment113 was published in the same Transactions for July 22, 1667. In all these early experiments the blood of animals, preferably lamb’s blood, was used. In some of the cases of Denis, however, the blood of a calf was used. Lower and Edmund King114 also transfused blood to a man, Arthur Coga, on November 23, 1667. In one of Denis’ cases,115 it was hoped to bring about sanity by this therapeutic measure, for the patient who underwent the procedure was demented. Because of the severe reactions which followed these early attempts at
transfusion and because of the death of one of Denis' patients (probably not from the transfusion, but from poisoning) the transfusion of blood to human beings was prohibited by law in France, and in 1670 by an act of Parliament in England. The transfusion of blood was therefore abandoned for many years.

James Blundell, the distinguished English obstetrician and physiologist, reopened the subject of the transfusion of blood. Many of his patients had died because of puerperal and postpartum hemorrhage. Blundell felt that transfused blood might have saved them. Postulating that when blood is to be transfused to an animal, it should be obtained only from an animal of the same species, he was the first to transfuse human blood to a patient (September 26, 1818). Unfortunately, the patient was at the point of death and could not be revived by this therapeutic measure. Blundell transfused blood on many other occasions, and, according to Sturgis, of ten patients to whom blood was transfused, five died and five lived. Despite the failures, Blundell believed in the therapeutic benefits of the transfusion of blood, and predicted that the world would sometime realize its value.

Another procedure related to the transfusion of blood and to intravenous anesthesia is the intravenous administration of saline solutions to patients suffering from shock. According to Adams, Latta of Leith, Scotland, introduced this practice in 1831. Many investigators in the latter part of the nineteenth century, as mentioned by Hirsh, demonstrated the effectiveness of infusing a physiologic solution of sodium chloride in cases of surgical as well as traumatic shock. For a time the intravenous use of sodium chloride superseded that of whole blood, obviating the problem of coagulation as well as the problem of the procuring of blood donors.

Theodor Bischoff performed some very interesting experiments in 1835. He demonstrated that when the whole blood of one animal was injected into an animal of another species, toxicity and death resulted. Bischoff found, however, that the injected animal would tolerate defibrinated blood. John Braxton-Hicks, according to Hirsh, opened up the field of the use of
The History of Surgical Anesthesia

chemical anticoagulants in 1868. He added sodium phosphate to blood used for transfusion, noting its anticoagulant properties.

It was not until 1914, however, that much real progress was made in the problem of anticoagulation. At that time A. Hustin118,119 of Belgium described a new method of transfusion in which a solution of glucose and sodium citrate was used as an anticoagulant. In the same year Professor Luis Agote120 of Buenos Aires transfused citrated blood successfully. In 1915, Richard Lewisohn121 of New York City reported a means of regulating the dosage of sodium citrate, so that its efficiency as an anticoagulant would be insured but its toxic characteristics would be overcome. After using the method experimentally with no ill results, he reported that he had transfused blood successfully to two patients with this new method.

Besides the problem of clotting, there remained the problem of discovering why, in the course of transfusion, some human blood was not compatible with other human blood. For even when human blood was used exclusively in transfusions, severe reactions resulted in many cases. Karl Landsteiner,122 in 1900, and Samuel G. Shattock,123 working independently in the same year, reported on the incompatibility of different types of human blood. In a footnote to Landsteiner's article it was pointed out that all blood could be divided into three types. The fourth type, according to Sturgis,110 was discovered by two students, De Castello and Sturli, in 1902. Solution of the problem of the compatibility of the blood and the problem of coagulation is the basic discovery on which the successful transfusion of blood rests. Recently the blood bank, by means of which it is possible to keep blood in storage for ten days, has been developed. Blood serum and plasma are now being used to some extent to replace whole blood124 and have been of utmost importance in war medicine.

The first monograph on intravenous anesthesia to be printed was that of Pierre-Cyprien Oré125 (fig. 26) (1875). He had published a preliminary report on this subject in 1872.126 Oré experimented with the intravenous injection of chloral hydrate into animals. After successful experimentation on animals he was able
Intravenous Anesthesia & Related Procedures
to produce general anesthesia in human beings by this method.
On February 16, 1874, Oré reported to the French Academy of
Sciences the first case in which he had employed this type of
anesthesia for a human being. Oré was very enthusiastic about
intravenous anesthesia with chloral hydrate, and believed it to
be superior to inhalation anesthesia with ether or chloroform.
But inhalation anesthesia continued to be favored and intra-

FIG. 26 Title page to the first monograph to be published on intravenous anesthesia.
Reproduced by courtesy of the Army Medical Library.
venous anesthesia was not used for several years. As Greene has suggested, Oré’s drug (chloral hydrate) was not well suited to anesthetic purposes. Its anesthetic action was slow in disappearing and the required dosage for purposes of surgical narcosis was close to the toxic dosage.

Before and after the introduction in 1903 of the barbiturates, which were to revolutionize the use of intravenous anesthesia, other drugs were employed. In 1899, H. Dresser of Munich introduced methylpropylcarbinol urethane (hedonal), and in 1905, N. P. Krawkow and his associates at St. Petersburg demonstrated the value of hedonal as an anesthetic agent for intravenous use. At about this time Fedorow of St. Petersburg reported favorable results in 530 cases in which he used hedonal as an anesthetic agent in a physiologic solution of sodium chloride.

In 1909 Bier used the regional intravenous method to obtain anesthesia of the limbs. He injected a solution of procaine hydrochloride into the veins near the site of the proposed operation. In the same year Ludwig Burkhardt of Germany reported on the use of chloroform and ether injected intravenously for general anesthesia. The difficulties in administration were so great that the intravenous use of ether and chloroform was soon discarded. In 1912 J. Goyanes of Madrid reported on the intra-arterial use of procaine hydrochloride.

Paraldehyde as an anesthetic agent for intravenous use was reported on in 1913 by H. Noel and H. S. Souttar. In the years after the first World War the intravenous use of paraldehyde became marked, and, according to Greene, this agent has retained a small but lasting position in the field of intravenous anesthesia. It is employed chiefly to produce basal anesthesia for some major operations and to produce complete anesthesia for some minor operations.

Elisabeth Bredenfeld of Switzerland in 1916 reported on the intravenous use of morphine in combination with scopolamine. In the same year C. H. Peck and S. J. Meltzer suggested the clinical use of magnesium sulfate as an intravenous anesthetic agent. Another anesthetic agent that was employed intra-
Intravenous Anesthesia & Related Procedures

Intravenous was ethyl alcohol. It was so used experimentally by Nakagawa of Japan in 1921. M. G. Marin of Mexico established the clinical use of this agent in 1929. In 1929, also, Martin Kirschner reported on the intravenous use of tribromethyl alcohol in amylene hydrate (avertin).

According to Greene, none of the aforementioned preparations, with the exception of paraldehyde, attained lasting favor. Anesthesia produced intravenously with these agents either could not be uniformly controlled or was not so reliable or safe as anesthesia obtained by inhalation. Furthermore, the introduction of endotracheal anesthesia in 1909 (which will be considered subsequently) made available a procedure that was safer than intravenous anesthesia,* in terms of the anesthetic agents then known.

Foundation for the relatively recent and continued success of intravenous anesthesia was the development of the barbiturates. Barbital (veronal), the first of these agents, was synthesized in 1902 by Emil Fischer of Berlin, one of the greatest physiologic chemists of all time. The first barbiturate was a long acting drug, very slow in producing anesthesia, and, consequently, it left patients in a deep sleep which disappeared only after twenty-four to forty-eight hours. Other long acting barbiturates included phenobarbital, soneryl, dial, and neonol. In 1920 Bardet of France experimented with the anesthetic qualities of somnifene (a combination of veronal and alurate), and in 1924 Fredet and Perlis introduced the intravenous technic of administration of this drug. In the same year dial (di-allyl-barbituric acid) was used as an anesthetic agent by Bogendörfer of Würzburg.

The use of dial injected intraperitoneally has been recommended by John F. Fulton and co-workers in their work in neurologic operations on animals. They used it first at Oxford on June 2, 1929, on the advice of John Beattie. Since coming to

* With the introduction of evipal sodium in 1933 and of pentothal sodium in 1934 as agents, intravenous anesthesia competed successfully with endotracheal anesthesia. For certain operations each of the above-mentioned types of anesthesia has advantages over other types in that for operations involving the face and neck, the surgeon has clear access to the operative field.
The History of Surgical Anesthesia

Yale in 1930, Fulton and his colleagues have used dial, sodium amytal, and pentobarbital sodium (nembutal) nearly 5,000 times as surgical anesthetics for animals with good results.

Pernoston or pernocton was the first barbiturate widely used for general intravenous anesthesia. It was introduced by R. Bumm of Germany in 1927. Its action was quicker and for that reason it was a more satisfactory anesthetic than the aforementioned barbiturates.

In 1929 somnifene, according to Geyer, was injected intramuscularly for the production of anesthesia. In the same year L. G. Zerfas, J. T. C. McCallum and their associates reported on the intravenous use of sodium amytal for anesthesia. In 1929, also, John S. Lundy (fig. 33) of the Mayo Clinic reported on the barbiturates as anesthetic, hypnotic, and antispasmodic agents, with special reference to sodium amytal. According to Adams, this particular barbiturate was used more frequently in the United States from 1929 to 1933 than any other agent for the production of intravenous anesthesia. According to Greene, sodium amytal is still widely useful in the medical management of patients who have neurologic and psychiatric disturbances, but with the advent of even shorter acting barbiturates its use as an anesthetic agent has been displaced. Sodium amytal was used as an anesthetic agent for experimental surgery on animals, being made available in 1928. John F. Fulton first used it this way on January 21, 1929. Many other laboratory workers used it about this time.

The intravenous use of pentobarbital sodium (nembutal) was reported on by R. H. Fitch, R. M. Waters, and A. J. Tatum in 1930. Lundy, in the same year, after an extensive study of sodium amytal and neonal, concluded that anesthesia produced intravenously with these barbiturates was not justified because of the untoward results incident to their use. In 1931, however, he advocated the intravenous use of pentobarbital sodium as a hypnotic agent.

Advancement in the practical use of intravenous anesthesia was brought about by the discovery of evipan. It was first syn-
[Fig. 29] SIR CHRISTOPHER WREN, who discovered a method of administering medicine intravenously. Reproduced from the frontispiece to Ann. Med. Hist. for July, 1929. Courtesy of Paul B. Hoeber, Inc.
[Fig. 30] RICHARD LOWER, who was the first man known to transfuse blood to animals. Reproduced from Stirling, William: *Some apostles of physiology.* London, Waterlow and Sons, 1902.
Intravenous Anesthesia & Related Procedures

thesized by the chemists Kropp and Taub, according to Bogen-
dörfer. H. Weese and W. Scharpf reported in 1932 on its pharmacologic and clinical effects. This new derivative of bar-ituric acid was very rapid in its hypnotic action. Likewise, the duration of its anesthetic effect was very short. Early in 1933 Weese reported on an improved compound, evipan-natrium (evipal sodium or evipal soluble), as an anesthetic agent for intravenous use. Evipan (called evipal in the United States), because of its rapid destruction within the body, was found to produce very safe anesthesia for minor operations of short dura-
tion. According to Geyer, more than 4,000,000 patients have been operated upon with the aid of this anesthetic agent, admin-
istered intravenously. One of the earliest papers on the clinical use of evipan was published by Jarman and Abel in 1933.

In 1934 Lundy introduced the technic of intermittent intra-
venous administration of pentothal sodium (sodium ethyl-methyl butyl thiobarbituric acid). He also experimented with a related barbiturate, sodium allyl secondary butyl thiobarbituric acid, but concluded that pentothal sodium was the better of these two for anesthetic purposes. Lundy also found pentothal sodium to be considerably more potent than evipal sodium. Moreover, pentothal sodium afforded better surgical relaxation than did the other barbiturates. Since its introduction in this country, pentothal sodium has been widely used. At the Mayo Clinic it had been used alone or in combination with other types of anes-
thetic agents in 31,931 operations up to and including December 31, 1941. J. R. Fulton recently recommended the intra-
venous use of pentothal sodium under skilled direction for wartime conditions. He also advocated the intravenous use of pen-
tothal sodium as an anesthetic measure in the treatment of fresh burns. The Medical Research Council of Great Britain has also recommended anesthesia with pentothal sodium as well as that produced with gas and oxygen, prior to the local treatment of severe burns.

Another short acting barbiturate, eunarcon, was introduced as an intravenous anesthetic agent by Otto Gandow in 1936.
The History of Surgical Anesthesia

The use of still another barbiturate, sodium isoamyl-ethyl-thio-barbiturate, was reported in 1938 by S. C. Cullen and E. A. Rovenstine. Recently new ultra-rapidly acting barbiturates are being used in England.*

According to Lundy and his associates, the scope and safety of intravenous anesthesia have been increased by the simultaneous use of oxygen or of a mixture composed of 50 per cent oxygen and 50 per cent nitrous oxide. Intravenous anesthesia also is of great value as a method of induction for other forms of general anesthesia and to supplement spinal, local, and regional anesthesia, when indicated. Recently, Mousel has suggested that intravenous anesthesia be favored particularly in cases in which diathermy or cautery is to be used, for intravenous anesthesia eliminates the hazard of fire and explosion. For the same reason, intravenous anesthesia is of great value for the reduction of a

* Personal communication, Dr. Noel Gillespie, State of Wisconsin General Hospital, Madison 6, Wisconsin.
fracture under the roentgenoscope. Another advantage of intravenous anesthesia in operations on the head and neck, as suggested by Greene, is elimination of anesthetic apparatus from the field of the operation. To patients undergoing short operations, the rapid and pleasant transition from consciousness to complete anesthesia constitutes the chief advantage of intravenous anesthesia.

A recent use of intravenous anesthesia is its employment in dental operations. Hubbell reports 13,000 intravenous anesthetics in which a 2.5 per cent pentothal solution was the only anesthetic agent used. In 4 per cent of these cases oxygen was given during the operation. All operations were for extractions and oral surgery performed in the office. Earlier papers on this subject are those of Wycoff, Bullard, and Hubbell and Adams.

J—Endotracheal Anesthesia

It is well known that Vesalius prior to 1543 passed a tube into the trachea of an animal (fig. 31), the thorax open and the lungs exposed; by blowing air into the tube he was able to maintain artificial respiration. This important experiment appears, significantly, at the very end of the Fabrica as follows:

Next you will begin the section which I promised a little while ago I would describe, that on a pregnant bitch or sow, although from the point of view of the voice it is better to take a pig, since when a dog is bound for some time, no matter what you do, he neither barks nor howls after a while, and so you cannot judge the weakening or cessation of the voice... (Description of how to tie the animal down)... And then I make a long cutting in the throat with a rather sharp knife which can lay back the skin and the muscles beneath it right down to the trachea, taking care that the cutting does not slip off to the side and injure some important vein. Then with my hands I take the trachea and separating it from the superimposed muscles with my fingers only, I look for the carotid arteries on its sides and the nerves directed to it of the sixth pair of nerves of the brain, then I observe also the nerves returning on the sides of the trachea, which I sometimes intercept with a binding (ligate), sometimes cut, and this first on one side, with the result that when the nerve is tied or cut one can clearly observe how the voice perishes midway, and when both are cut, it ceases entirely, and if I release the bindings it returns again, quickly indeed... (Description of examination of abdomen and thorax)... But that life may in a manner of speaking be
The History of Surgical Anesthesia

restored to the animal, an opening must be attempted in the trunk of the trachea, into which a tube of reed or cane should be put; you will then blow into this, so that the lung may rise again and the animal take in air. Indeed, with a slight breath in the case of this living animal the lung will swell to the full extent of the thoracic cavity, and the heart become strong and exhibit a wondrous variety of motions. So, with the lung inflated once and a second time, you examine the motion of the heart by sight and touch as much as you wish . . . (Further examination of the thoracic cavity) . . . With this observed, the lung should again be inflated, and with this device, than which I have learned nothing more pleasing to me in Anatomy, great knowledge of the differences in the beats should be acquired. For when the lung, long flaccid, has collapsed, the beat of heart and arteries appears wavy, creepy, twisting, but when the lung is inflated, it becomes strong again and swift and displays wondrous variations . . . (Description of examination of the fetus) . . . And as I do this, and take care that the lung is inflated at intervals, the motion of heart and arteries does not stop . . . (Description of examination of the auricles of the heart).*

Robert Hook performed a similar experiment before the Royal Society in 1667. After these early experiments, intubation of the trachea was employed as a therapeutic procedure in asphyxia and drowning, often with dire results. John Snow, whose contributions to anesthesia have been mentioned previously herein, apparently was the first to produce endotracheal anesthesia in an animal. He performed tracheotomy on a rabbit and into the resultant opening he inserted a wide-bore tube. The animal was made to breathe through this tube and into and out of a bag filled with the vapor of chloroform.

Apparently, Friedrich Trendelenburg was the first to use this procedure on man. In 1869, to prevent aspiration of blood into the lungs during an operation on the upper air passages, Trendelenburg performed preliminary tracheotomy and passed a wide-bore tube into the trachea. Attached to the tube was an inflatable cuff. This provided watertight contact with the tracheal wall. The tube was connected by a length of rubber tubing to a gauze or flannel-covered funnel. Anesthesia was accomplished and continued by dropping of chloroform onto the gauze or flannel.

* This translation has been compared with that of Benjamin Farrington. (See Farrington, Benjamin: “The last chapter of the De Fabrica of Vesalius.” Tr. Royal Society of South Africa, 20:1-14, 1932.) Farrington notes that this is the only experiment in this chapter which Vesalius claims to have originated.
[Fig. 33] JOHN S. LUNDY.
Endotracheal Anesthesia

William Macewen in 1880 found it possible to obtain endotracheal anesthesia without resorting to tracheotomy. He desired to maintain continuous anesthesia, and also to protect the respiratory tract from the possible aspiration of blood in the removal of a malignant lesion situated at the base of the tongue. To do this he inserted a metal tube into the trachea by way of the mouth. Chloroform was administered through the tube, the laryngeal opening was packed off and the operation was successfully performed.

To meet the needs of anesthesia in otorhinolaryngologic operations, Karel Maydl, professor of surgery at the University of Prague, in 1893 modified the apparatus O'Dwyer had invented for intubation of the larynx for the relief of patients suffering from diphtheria. Maydl connected a Trendelenburg funnel to an O'Dwyer tube, and the result apparently was satisfactory.

Using Maydl's technic, Victor Eisenmenger constructed an apparatus which he described in the same year (1893) as that in which Maydl's work was done. This consisted of a wide-bore semirigid tracheal tube in which was carried an inflatable cuff modeled after that of Trendelenburg.

According to Matas, Truehead of Galveston, Texas reported in 1869 on an apparatus of which the purpose was to insufflate air into the lungs by means of an intubating cannula. The mouthpiece of this apparatus was connected to a bellows which automatically injected and aspirated air in and out of the trachea. In this machine Truehead anticipated the Fell-O'Dwyer apparatus.

In 1880, O'Dwyer published his preliminary article on intubation of the larynx for the relief of asphyxia caused by acute or chronic laryngeal obstruction. Some time later, George H. Fell, of Buffalo, New York, invented an apparatus for artificial respiration. This he demonstrated at the International Medical Congress held in Washington on September 7, 1893. It consisted of a hand bellows connected to a tube which was inserted into the trachea. Fell modified his original apparatus by substituting
The History of Surgical Anesthesia

a face mask for the tracheotomy tube. This mask fitted closely over the nose and mouth. Air was forced into the larynx through the natural passages, and expired air was allowed to escape by a side outlet in the injecting tube.

Because of the disadvantages of the oronasal apparatus of Fell, O'Dwyer made a much needed modification of it. O'Dwyer's improvement consisted of a long intubation cannula fitted with a conical tip graduated so that it would fit variations in the size of the larynx. The external end consisted of two branches; one branch received the ingoing air from the bellows; the other branch served as an exit for the air (fig. 34). Although O'Dwyer's apparatus had been anticipated by many experimenters, his machine was remarkable for its simplicity and efficiency.

Matas devoted much time and work to attempts to improve thoracic surgery. The chief difficulties encountered in surgery of the thorax previously had arisen from the making of large surgical openings in the thorax. These permitted the rapid and free entrance of air, followed by collapse of the lungs. This in turn led to cyanosis, defective oxygenation and arrested respiration. Older surgeons afforded some relief to their patients in cases of penetrating wounds of the thorax by sealing the opening. But when they were confronted by tumors of the thorax or mediastinum, most surgeons of the eighteenth and nineteenth centuries refused to operate because of the notoriously poor results of surgical intervention in such cases.

Matas, in 1897, read of the experiments of Tuffier and Hallion. These investigators inserted a long copper tube attached to a bellows into the larynx of a dog. Artificial respiration being established by this means, the pleura was freely incised through an intercostal space. The edges of the wound were kept apart to allow free circulation of air. The pleural cavity was illuminated by a small incandescent lamp. It then became easy to operate on the esophagus and pneumogastric nerve without interfering with respiration.

At about this time Matas also read in the Medical and Surgical Reports of the Presbyterian Hospital of New York for 1896 an article [66]
[Fig. 34] Original Fell-O'Dwyer apparatus. Reproduced from medical and surgical reports of the Presbyterian Hospital (N. Y.), 1896.
Endotracheal Anesthesia

on the use of the Fell-O’Dwyer apparatus for the treatment of opium narcosis in nonsurgical conditions. In these cases, artificial respiration was prolonged by the use of the Fell-O’Dwyer apparatus and respiratory failure was overcome. His reading of the aforementioned two papers suggested to Matas a method for the solution of the problems of operations on the thorax. He elaborated his ideas before the Louisiana State Medical Society in 1898, recommending use of the Fell-O’Dwyer apparatus to prevent the disastrous results of acute pneumothorax in thoracic operations. Dr. F. W. Parham, a colleague, profited by these remarks; using the suggestions of Matas, he successfully resected the wall of the thorax for a sarcoma.

Matas not only was the first to advocate intralaryngeal insufflation for intrathoracic operations, but he also modified the Fell-O’Dwyer apparatus for the maintenance of anesthesia while artificial respiration was being applied (fig. 35). He altered the laryngeal cannula by furnishing a branch and stopcock to which a rubber tube and funnel were connected. The funnel was covered with flannel and was used as an inhaler.

Franz Kuhn of Kassel, Germany, published his first communication of a series on endotracheal anesthesia in 1900, and in 1902 he published a paper on nasal intubation. A few years earlier, in 1895, to abolish the idiosyncrasy of a patient to chloroform, Rosenberg recommended the local application of cocaine to the nose. Kuhn also advocated the use of cocainization as a very helpful adjunct to intubation. Dr. Kuhn published a book on intubation in 1911. He deserves a good deal of credit, for by 1912 his advances in endotracheal anesthesia anticipated the methods employed today.

In 1907, Barthélémy and Dufour of Nancy advocated use of the insufflation principle of endotracheal anesthesia.* This study anticipated, to a large extent, the work of S. J. Meltzer and John Auer. The last-mentioned investigators published the re-

* I am greatly indebted to Dr. Gillespie for many of the facts reported in this and in the two succeeding paragraphs. See: Gillespie, N. A.: Endotracheal Anesthesia (Madison, University of Wisconsin Press, 1941). Gillespie was the first to point out, as far as I am aware, that Barthélémy and Dufour, two years previous to Meltzer and Auer, had discovered the use of the insufflation principle of endotracheal anesthesia.—T.E.K.
The History of Surgical Anesthesia

suits of their researches in 1909: they demonstrated that if air were blown into the trachea of an animal whose respiratory mechanisms had been paralyzed, full oxygenation of the blood could be maintained. Not long afterward (1910) Charles A. Elsberg175 succeeded in clinical application of the work of Meltzer and Auer. In 1912 Charles H. Peck176 and later many others also demonstrated the application of this principle to clinical anesthesia. Meanwhile, in 1911, F. J. Cotton and Walter Boothby177 had advocated the endotracheal insufflation of mixtures of oxygen and nitrous oxide. Chevalier Jackson’s perfection of the direct-vision laryngoscope introduced by Alfred Kir-stein178a in 1895 also contributed to the success of endotracheal anesthesia. By its use intubation was made more nearly certain and more nearly accurate.

Further improvement in insufflation endotracheal anesthesia was achieved during the first World War. At this time, I. W. Magill and E. S. Rowbotham were serving with the British Army Plastic Unit as anesthetists. For their type of patient, insufflation endotracheal anesthesia was well-suited. They also found it possible to improve upon the technic. It was found desirable to pass a second tube into the trachea to act as a return airway for the escaping vapor. For operations involving the mouth, they learned to pass the tube through the nose into the pharynx and thence, by the help of a guiding rod or forceps, into the trachea. After more experience, Magill and Rowbotham found it possible to intubate the trachea “blindly” without the use of other instruments.

It then occurred to these anesthetists that anesthesia could be more economically produced if only one wide-bore tube were inserted into the trachea and the patient were allowed to breathe in both directions through it. The early machines of Gwathmey and McKesson in the United States and that of Boyle in England, which worked on the “semi-closed” principle, were admirably suited to this form of inhalation endotracheal anesthesia. A further development in technic was that instituted by Joseph W. Gale and Ralph M. Waters.179a These innovators reported a method for intubating one bronchus with a tube fitted with an
Carbon Dioxide Absorption

inflatable cuff, so that one lung could be isolated for operations such as lobectomy and pneumonectomy. The advantages of endotracheal anesthesia and the fact that this method so closely approximates physiological respiration won for it a favor which endures to the present day.

K—Carbon Dioxide Absorption

In 1915, Dennis E. Jackson\(^{180}\) (fig. 36) published an article in which he described a method for the production and maintenance of prolonged anesthesia or analgesia by means of nitrous oxide, ethyl chloride, ether, chloroform, ethyl bromide, somnolent, and others, with oxygen. Jackson's method involved the continuous process of rebreathing by the experimental animal of gaseous or volatilized anesthetic agents from which the exhaled carbon dioxide had been removed. Sodium hydrate and calcium hydrate were used to absorb the exhaled carbon dioxide. Oxygen was constantly added in proportions suitable to maintain the animal in good physical condition. Jackson did not have an opportunity to try his experiments on human beings, but suggested that human patients could be anesthetized by his method. He demonstrated his equipment at the sixty-seventh annual meeting of the American Medical Association in Detroit in 1916. There Jackson stated that the cost of this nitrous oxide-oxygen anesthesia should be approximately thirty-two cents per hour. This was considerably less expensive for patients than other technics had been, since at that time the usual cost of nitrous oxide-oxygen anesthesia was about $2.50 per hour. Very few members of his audience thought his method was practicable. At the Washington University School of Medicine in St. Louis, however, Dr. Otto Henry Schwarz and his son Dr. Otto Henry Schwarz, Junior, and Dr. Willard Bartlett gave Jackson some encouragement. The Drs. Schwarz performed a number of examinations in the obstetrics department of that university, using nitrous oxide-oxygen anesthesia produced with Jackson's machine (fig. 37). Dr. Pessel successfully produced anesthesia a number of

[69]
The History of Surgical Anesthesia

times by the employment of Jackson's machine. Once he anesthe-
tized a patient for Dr. Bartlett, who removed a thyroid gland. In
the summer of 1918, Dr. Jackson offered his machine to the Medi-
cal Corps of the United States Army, but nothing came of this.

Dr. Ralph M. Waters, then of Sioux City, Iowa, became very
much interested, however. In 1920, he wrote to Jackson, ask-
ing for reprints and suggestions. Jackson coöperated and Dr.
Waters demonstrated clinically the work Jackson had done so
well experimentally. Waters' apparatus was somewhat simpler
than Jackson's. It consisted of a face mask, a container for granu-
lated soda lime which opened into a large rubber bag, and a
rubber tube leading from the bag to the nitrous oxide and oxy-
gen tanks. The great advantage of this type of anesthesia was of
course the remarked reduction in expense to the patient, as had
been predicted by Jackson.

In 1924, as has been mentioned, Waters perfected Jackson's
carbon dioxide absorption technic. Guedel and Waters wrote
concerning the importance of the inflatable cuff in 1928. The
absorption technic, with the use of the inflatable cuff, made
possible the development of true inhalation endotracheal
anesthesia.

Brian C. Sword started to investigate the possibilities of a
circle filter about 1926. According to Sword, the apparatus
generally employed for the carbon dioxide absorption method of
anesthesia, consisting of a canister and bag at the face, was
awkward in that it was too close to the field of operation. In an
effort to surmount this difficulty, Sword consulted Professor
Yandell Henderson, of the Yale University School of Medicine.
Richard v. Foregger aided in the construction and, in 1928, the
first apparatus was built. The apparatus was so made that the
inspiratory and expiratory phase ran in the same direction. This
required a separation by means of valves and two tubes: one for
inspiration and one for expiration. The two tubes were con-
ected by a "Y" so that they could be applied to a mask. The
canister and rebreathing bag were attached 2 feet (61 cm.) away
and, when this "circle" type of respiration was used, it made
[Fig. 36] DENNIS E. JACKSON.
[Fig. 37] Model of Dennis Jackson’s first anesthetic apparatus.
Physiologic Factors

little difference where the bag was placed. It was thus removed from the field of operation.

In this connection it is interesting to note that J. A. Heidbrink’s first machine, an improvement of the original Teter gas machine, provided for rebreathing. Dr. Heidbrink184 improved on the Teter machine in 1906. The Teter machine had two bags, one for nitrous oxide and one for oxygen. Dr. Heidbrink added a third bag for rebreathing.

In 1927, Dr. Heidbrink developed a “round trip” absorber. This he displayed that year at a medical meeting in Minneapolis. He withheld it from the market for some time, believing that the absorber principle would complicate anesthetic technic. In the meantime, “round trip” absorbers were brought out by Dr. Richard v. Foregger and Dr. Ben Morgan. This required that the Heidbrink machine be supplied with an absorber; hence, their two-chamber absorber was designed and built.

L—Physiologic Factors

In 1847 Alfred-Armand-Louis-Marie Velpeau185 and François Magendie186 reported their general observations on the physiologic effects of ether. Ducros, according to Hahn,186A early in the year claimed priority in the discovery of these physiologic effects based on his work done in 1842 and in March, 1846. And Morton186B in 1850 published his short study. It was Magendie’s illustrious pupil, Claude Bernard, however, to whom we are indebted for basic work in this field. Bernard, realizing that the successful practice of medicine must be based on sound physiological principles, carried his research into all possible lines. It was his good fortune to be working at the time that anesthesia had become accepted as a necessary and a desirable part of the practice of surgery. To be sure, the practice of anesthesia on the Continent was for the most part entrusted to mediocre assistants, a condition that is still said to exist.187 Bernard tried hard to place anesthesiology on a scientific basis and his monograph188 can be considered a landmark.* Bernard clear-

* Bernard in this important work which includes an excellent survey of the history of anesthesia may have been the first to suggest pre-anesthetic medication with morphine and other central depressants. Bernard also was one of the early advocates of the need for adequate oxygen supply during anesthesia.
The History of Surgical Anesthesia

ly recognized the dangers of anesthesia and made a careful study from the theoretical viewpoint.

As pointed out so well by Olmsted,189 the theory of the action of anesthetic agents prevalent about 1870 was that anesthesia was merely asphyxia. Bernard did not believe this to be true and proposed a different one based on his observations of the action of chloroform on muscle and nerve tissues.190 He found that under chloroform anesthesia muscle first loses its excitability and then becomes rigid and opaque. He found that nerves also became opaque under chloroform and if the action had not been pushed too far, the nerve would return to its original state when the anesthetic agent was eliminated and would again be able to conduct nerve impulses. Accordingly, Bernard191 developed the theory that anesthesia is caused by a reversible coagulation of the constituents of the nerve cell. Interestingly enough, Bernard’s theory was supported by a study published in 1930 by Bancroft192 and Richter of Cornell University. It was severely attacked, however, two years later by Henderson and Lucas193 of Toronto.

Edmund W. Andrews,194 a Chicago surgeon, found some difficulty in using pure nitrous oxide as an anesthetic agent. He reasoned that the oxygen contained in nitrous oxide was not available for the proper oxidation of the blood. If any attempt was made to continue its anesthetic action, the patient began to show the signs of asphyxia. Nitrous oxide, alone, therefore, was not a satisfactory anesthetic for operations of long duration. To overcome this difficulty, Andrews experimented to see if the addition of oxygen to nitrous oxide would make for a safe anesthetic. He found that in rats a mixture of one-fourth oxygen and three-fourths nitrous oxide was satisfactory. Andrews used a mixture of one-third oxygen and two-thirds nitrous oxide (the mixture having been already compressed into cylinders) successfully for operations of short duration upon a few of his own patients. He felt, however, that the best proportion of oxygen would be one-fifth by volume, which he had computed would equal the proportion in atmospheric air.

Paul Bert (fig. 38) was one of the outstanding pupils of
Physiologic Factors

Claude Bernard. Like his teacher he was keenly aware of the shortcomings of anesthesia, and searched for an anesthetic agent that would be without any danger to the patient and still have the desirable qualities. The use of nitrous oxide for operations of short duration had by his time become popular, especially for the extraction of teeth. Bert without previous knowledge of the work of Andrews found that the administration of pure nitrous oxide could not be prolonged for more than two minutes without bringing on symptoms of asphyxia of dangerous appearance.

Bert, profiting by his profound knowledge of the pressures of gases, was able to remove this difficulty. He used a mixture of three-quarters nitrous oxide* and one-quarter of oxygen, having this mixture breathed under a slightly increased barometric pressure. He thus introduced into the blood of the experimental animal the quantity of oxygen necessary to maintain respiration and the quantity of nitrous oxide sufficient to maintain anesthesia. He was able, in this manner, to overcome the dangers of asphyxia.

Because of his success with animals, Bert recommended the use of nitrous oxide-oxygen anesthesia under increased atmospheric pressure for operations upon human beings. Its use proved successful, but unfortunately Bert’s method while brilliantly conceived lacked practicability necessitating as it did cumbersome and expensive apparatus (fig.39).

Bert carried out his researches on other anesthetic agents, especially chloroform, but felt that nitrous oxide was the superior agent for the following reasons: (1) The absence in the use of nitrous oxide of the usual period of excitation. (2) The tranquillity it gives to the surgeon who has the assurance that the dosage of the anesthetic agent cannot change during the operation and that consequently the patient has nothing to fear. (3) The almost instantaneous return to complete sensibility even after 25 minutes of anesthesia. (4) The almost general absence of discomfort, nausea, and vomiting. (5) Its remarkable harmlessness.

The History of Surgical Anesthesia

As has been suggested earlier herein, while sulfuric ether was the first agent of choice in the United States and was regarded by many surgeons as a safer anesthetic than chloroform, in England chloroform was thought to be the safer and more reliable agent. In France, Marie-Jean-Pierre Flourens96 early called attention to the toxicity of chloroform. The use of chloroform led to many deaths and its greatest advocate, Simpson, had his share. Simpson reasoned that fatalities were due to syncope brought about by sudden failure of the circulation and asphyxia caused by the failure of respiration.

James Syme of Edinburgh, who was one of the first surgeons in Great Britain to use ether anesthesia, attributed chloroform deaths to failure of respiration alone. His view is well defined in his aphorism: “attend to the respiration, never mind the pulse.” Because of Syme’s influential position (his son-in-law was Lord Lister), this view dominated the administration of chloroform throughout Scotland and part of England. In London, the watchword was “watch the pulse.” But even here many physicians believed in Syme’s ideas. John Snow working with very limited equipment and resources reached the correct conclusion that though respiration usually ceases before the heart, sometimes the heart is the first to stop.

In 1855, however, a chloroform commission in Paris presented a report supporting Syme’s idea that respiration failed before the heart. The British were not satisfied, and in 1879 a committee on anesthetics was appointed by the British Medical Association to investigate the problem further; it reached the following conclusions in regard to chloroform: (1) that lowering of the blood pressure is due to the weakening of the heart’s action, (2) that this effect is given by chloroform and not by ether, (3) and that death may occur any time during chloroform inhalation by sudden stoppage of the heart. This report had wide acceptance and threw Syme’s ideas into the background.

Interest in the Syme theory was revived, however, by one of his favorite students, Lt. Col. Edward Lawrie. It was Lawrie, according to Osborne,201 who organized the first Hyderabad197
[Fig. 39] Paul Bert’s anesthetic apparatus.
Physiologic Factors

commission with himself as director. Lawrie did not possess the proper qualifications for research other than an unbounded enthusiasm for the project and for his preconceived idea that Syme was right. Needless to say, Lawrie's report supported Syme's contentions. The medical world did not support the findings of the first Hyderabad commission, whereupon in 1889 the second Hyderabad commission was organized.

Because of his brilliant success in other fields of investigation, Lauder Brunton was chosen to direct the second commission's research. A glance at the conclusions of this report suggests that it would have been better to have had a director with more scientific training. Brunton concluded (1) Failure of respiration is the only means by which the heart's safety is jeopardized, (2) The heart never stops before respiration, (3) The vagus action of the heart is beneficial, preventing a too great distribution of the chloroform, (4) Chloroform does not directly injure the heart substance, (5) The fall of blood pressure during anesthesia is beneficial to the heart, (6) The Glasgow committee used faulty methods and ascribed to chloroform what was really due to asphyxia.

It was in the midst of this state of confusion that Edward Henry Embley of Melbourne, Australia, carried out his important experimental work. His first paper on the subject was entitled: "The question of safety in Syme's teaching in chloroform anaesthesia." Here Embley announced that not only Syme but also the renowned Hyderabad commission were wrong in their conclusions. Embley continued his studies and his great contribution was published in the British Medical Journal in 1902. It meant the final defeat of the work of the Hyderabad commission and consequently the renouncement of the Syme doctrine and experimental proof of Simpson's conjectures. Embley stated that (1) Heart muscle is very sensitive to chloroform poisoning, (2) The drug raises the excitability of the vagus, (3) Deaths in the induction stage of anesthesia are syncopal and unconcerned with respiration, (4) Failure of respiration is mainly due to fall of blood pressure, (5) In the post induction stages of anesthesia...
there is a general depression of all activities and no longer syncope through excited vagus action. According to Osborne, the only important point that Embley missed was the fibrillation of the heart caused by deep chloroform poisoning. Later on, after further experimentation, he was able to prove that under chloroform anesthesia there was not only an arrest of the muscular activity of the heart, but also an arrest of the muscular activity of the arterioles.

As pointed out so well by Hoff of New Haven, the final solution of the chloroform problem was brought about by A. G. Levy. In his preliminary report, Levy outlined the solution as follows: (1) In properly organized laboratory experiments, syncope and sudden death were produced during light chloroform anesthesia. (2) The cause of syncope was the sudden onset of ventricular fibrillation. (3) Intravenous injection of adrenalin was almost always fatal in light chloroform anesthesia, and that such sudden death was produced by ventricular fibrillation. Later, Levy elaborated on these points and demonstrated their relation to the clinical problem.

Arthur E. Guedel (fig. 40) in the fall of 1941 was the recipient of the third award of the Henry Hill Hickman Medal. So that the reader may gain some idea of the importance of this award, it can be said that on November 17, 1931, the Royal Society of Medicine accepted from the Henry Hill Hickman Memorial Committee the sum of 200 pounds for the creation of a bronze medal in commemoration of Hickman. The medal was and is awarded by the Council of the Royal Society of Medicine on the recommendation of the Council of the Section of Anaesthetics. It is granted not oftener than triennially for original work of outstanding merit in anesthesia or in subjects relating thereto. This medal was first awarded in 1935 to Wesley Bourne of Montreal (figs. 41 and 42a and 42b). The second award was made in 1938, to Ivan Whiteside Magill, of London, whose contributions already have been discussed. The fourth award was made in 1944 to Ralph M. Waters, Professor of Anesthesia in the University of Wisconsin.
Physiologic Factors

The interest of Guedel in anesthesia can be traced back for many years. In 1909 he devised the technic of the self-administration of nitrous oxide and air for obstetrics and for minor surgical operations that could be performed in the physician's office. His first report on this subject appeared in 1911. This type of anesthesia was especially valuable in obstetric cases. As the patient received warning of an approaching pain, she placed the inhaler to her nose and breathed deeply a few times; then began to breathe normally. Intermittent anesthesia was thereby induced with each pain. In his pamphlet, "The Self-Administration of Nitrous Oxide," Guedel said that about 75 per cent of the mixture is rebreathed. His apparatus contained a respiratory valve which regulated the percentage of air to be mixed with the gas and the amount of the gas mixture to be rebreathed.

Although Dr. Guedel has made important contributions in the development of new anesthetic agents, such as in demonstrating the anesthetic action of divinyl oxide, earlier referred to herein, and his work on cyclopropane, as well as his work on carbon dioxide absorption, his outstanding contribution has been his emphasis on the importance of the physiologic factors in inhalation anesthesia. In May, 1920, his first paper on this subject appeared in print. This paper was a reflection of his experiences with the American Expeditionary Forces during World War I. In France he found it convenient to teach his colleagues the significance of certain reflexes under various stages of anesthesia. Guedel's conceptions of the "signs of anesthesia" have been brought up to date in his recent monograph. Dr. Guedel also has classified the various physical

* Dr. Noel Gillespie has suggested in his article, "The Signs of Anaesthesia" (Anes. & Analg. 22:275-282 [Sept.-Oct.] 1943), that the reflex signs of anesthesia are as important as the respiratory.

In the above-mentioned article, Gillespie points out that Plomley in the Lancet for January 30, 1847, first attempted to define the "stages" of anesthesia. A few months later, John Snow defined the "five degrees of narcotism." (See Snow, John: On the Inhalation of the Vapour of Ether in Surgical Operations. London, Churchill, 1847, pp. 1-4.) From the time of Snow to that of Hewitt (and continuing in England until 1928) anesthesia was divided into four stages as follows: I. Induction; II. The stage of struggling, or breath-holding, or delirium, or dreams; III. Surgical anesthesia; IV. Overdose, or stage of bulbar paralysis.
The History of Surgical Anesthesia

reactions which occur at various stages of anesthesia. These include respiration, activity of the eyeballs and the pupils, the eyelid reflex, the “area of swallowing” and the “area of vomiting.” Guedel’s contribution was his excellent description of the planes into which the third stage is subdivided.

Albert H. Miller, of Providence, Rhode Island, in 1925 published the results of his study of ascending respiratory paralysis as it occurs when the patient is under the influence of general anesthesia.* Dr. Miller was able to demonstrate that at the commencement of anesthesia, respiration is of the usual or mixed type. As anesthesia deepens, after a period of delayed thoracic respiration, the abdominal type of respiration appears. After a few inspirations, thoracic inspiration begins; it commences midway in the period of abdominal inspiration. A little later, thoracic inspiration occurs, but still is further delayed. Finally, abdominal inspiration begins. If the anesthetic dosage is further increased, paralysis of the costal muscles becomes more complete, and the condition of exaggerated abdominal respiration occurs. This is an indication of the presence of profound anesthesia.

There are other terms familiar to many anesthetists that deserve an emphasis in this historical study. Such a term is “balanced anesthesia.” This was suggested by Lundy in 1926 to indicate the use of a combination of anesthetic agents and methods so balanced that part of the burden of relief of pain is borne by preliminary medication, part by local anesthesia and part by one or more general anesthetic agents. Lundy recently has suggested that as more anesthetic agents become available, the tendency may be to use several agents and methods during a single operation. The advantage of this newer development is that it leads to greater flexibility and more (relative) safety.

“Ether percentages” and “anesthetic tension” are subjects

* The phenomenon of intercostal paralysis was first described by John Snow in 1858. (See Snow, John: On Chloroform and Other Anesthetics. London, Churchill, 1858, p. 42.)
Physiologic Factors

that need some clarification. Dr. Walter Boothby, who was in charge of the metabolism laboratory at the Peter Bent Brigham Hospital for several years and who served as lecturer on anesthesia in the Harvard Medical School from 1914 to 1916, did much work in and developed the aforementioned subjects. He has made important contributions to the physiology of anesthesia, in addition to his assistance of a technical nature. Boothby’s interest in anesthesia machines dates back to about 1910. He was stimulated by the enthusiasm of Dr. F. J. Cotton on the basis of Cotton’s observations made at the Cleveland Clinic. Accordingly, with the help of Cotton and that of Albert Ehrenfried, Boothby designed the Cotton-Boothby nitrous oxide-oxygen ether apparatus. As has been mentioned earlier, Cotton and Boothby also developed the use of nitrous oxide-oxygen anesthesia produced by endotracheal insufflation. Karl Connell, with the use of the anesthetometer, which he devised in 1913, showed that anesthetic tension, that is, the tension of ether vapor necessary to produce narcosis in man, is about 50 mm. of mercury. Boothby confirmed Connell’s work and found that the optimal dosage of ether vapor for man is between 47 and 53 mm. of mercury. He further demonstrated that patients vary but slightly in their susceptibility to ether.

The anesthetometer of Connell was also found to be useful in the determination of ether percentages. Boothby suggested that surgical anesthesia depends on the establishment in the blood and tissues of a definite ether tension corresponding to about 15 per cent of ether vapor in the alveolar air. He further demonstrated that in order to induce anesthesia quickly, air containing approximately 30 per cent of ether vapor should be administered for a period of from two to twelve minutes.

Frank Mann, using the Connell apparatus, tested the vascular reflexes of dogs with various tensions of ether vapor. He found that the physiologic reactions which occur during anesthesia with ether vary with remarkable constancy. The lowest ether tension that will allow operative work on dogs is about 36 mm. of mercury. Any tension between 36 and 45 mm. of
The History of Surgical Anesthesia

mercury is safe so far as the life of the animal is concerned, but tensions between 48 and 50 mm. are likely to prove fatal.

m—Pharmacologic Factors

The honor of being the recipient of the first award of the Hickman Medal belongs, as has been mentioned, to Wesley Bourne, anesthetist to the Royal Victoria Hospital, Montreal, and lecturer on pharmacology at McGill University. Bourne also has the distinction of being the first to receive the degree of Master of Science in Pharmacology, for work on Anesthetics. This was conferred upon him by McGill University. His thesis was entitled, "Heat Regulation and Water Exchange: the Influence of Ether on Dogs." The first degree of Master of Science in Anesthesia to be awarded, and the first to be granted in the United States, so far as the author is aware, was conferred on Dr. Edward B. Tuohy in 1936 by the University of Minnesota. Several of these degrees have been awarded since. It is of interest to note here than in 1935 the Royal College of Physicians and Surgeons (England) instituted a diploma in anesthetics.

Dr. Bourne has made many contributions of a physiologic and pharmacologic nature to the development of anesthesia. A few of his outstanding observations will be reviewed briefly. Early in his career Bourne, working with Stehle, proved that pure ether possessed to the highest degree the anesthetic qualities usually attributed to it. There had been those who believed that impurities sometimes found in ether were the important factors. Bourne next studied the impurities when added to ether used in anesthesia. He found that small concentrations of impurities were not harmful in ether anesthesia. Some of the commercial houses had claimed these impurities to be harmful. Later Storm Van Loewen and his co-workers and Sir Henry Dale, working separately, confirmed Bourne’s findings. Bourne concluded, on the basis of work carried out in the preparation of his thesis, that dogs, under the influence of ether anesthesia, lose the factor which regulates bodily temperature. In considering the
THE ROYAL SOCIETY OF MEDICINE
From His Majesty the King.
1, WIMPOL STREET.
LONDON, W.1.

24th May 1935.

Dear Sir,

It is my pleasant duty to inform you that the Council of the Royal Society of Medicine has unanimously decided to make the first award of the Hickman Medal to you upon the recommendation of the Council of the Section of Anaesthetics of this Society.

The Hickman Medal was founded in 1931 and its award is made for original work of outstanding merit in anaesthesia or in subjects directly connected therewith. The Deed of foundation lays down that the first award should be made in 1935 and subsequent awards at intervals of not less than three years. The award is open to any person of any nationality. I enclose a reproduction of both sides of the medal which is struck in bronze.

I am having the Medal prepared and despatched to you as soon as possible.

May I ask you to accept my personal congratulations on this first Award.

Believe me,

Yours faithfully,

[Signature]

Secretary,
Royal Society of Medicine.

Wesley Bourne Esq., M.D.,
Royal Victoria Hospital,
Manchester.

enclo.

[Fig. 42a] Letter from the Royal Society of Medicine to Dr. Bourne, announcing the first award of the Hickman Medal.
24th June 1936.

Dear Sir,

Thank you for your kind letter which I will lay before my Council at its next meeting.

(Here) I am to-day sending you under separate cover the Hickman Medal.

This Medal is carried out in bronze, is designed by H. Paget and is struck for us at the Royal Mint. On the one side is a portrait of Henry Hill Hickman and on the other side is an allegorical representation of Pain being banished by Anaesthesia. For this purpose we have personified Anaesthesia as a beautiful woman, Pain as a kind of devil who has held the patient by his chain. Anaesthesia has, as you will see, broken the chain binding the patient to Pain and is banishing him with an imperious gesture. He scowls at her holding his broken chain and his now useless scourge.

Yours faithfully,

[Signature]
Secretary.

Wesley Bourne Esq., M.Sc., M.D.,
32, Holton Avenue,
Westmount,
Montreal, Canada.

[FIG. 42b] Letter from the Royal Society of Medicine to Dr. Bourne, explaining the Hickman Medal.
Pharmacologic Factors

problem of the acidosis which occurs during anesthesia, Bourne, working with Stehle, established on the basis of data concerning human beings the fact that phosphoric acid is the responsible factor. Bourne also was able to show that the acidosis of anesthesia could be reduced by the rectal administration of copious quantities of a specially balanced solution of alkaline sodium and potassium phosphate, immediately after operation. About this time, too, Chauncey Leake was working on the problem of acidosis, especially the blood reaction in ethylene-oxygen anesthesia and nitrous oxide-oxygen anesthesia.

Bourne and his associates also studied the effects of anesthetic agents upon the liver. They concluded that ethylene was the anesthetic agent of choice for operations carried out in the presence of severe hepatic disease. Neither sodium amytal nor tribromethyl alcohol in amylene hydrate (avertin) influenced hepatic function, according to them. Stehle and Bourne also made a study of the changes in the activity and appearance of the kidney as brought about by anesthesia.

Although they did not believe that restorative agents should be used routinely in anesthesia, Raginsky and Bourne nevertheless found ephedrine to be of value clinically in overcoming profound anesthesia produced with tribromethyl alcohol in amylene hydrate (avertin). In a recent communication, Bourne and his associates, in discussing the use of spinal anesthesia for thoracic surgical operations, found the use of analeptic measures justified in instances of anesthesia in which there is a marked decrease in blood pressure, accompanied by an increase in pulse rate.

Another study originating from the Department of Pharmacology at McGill University is that of Bourne and his colleagues on the action of anesthetic and sedative agents upon the inhibited nervous system. These investigators concluded that amytal, pentobarbital sodium, alcohol, and tribromethyl alcohol in amylene hydrate (avertin) quickly abolish most of the signs of inhibitory neurosis in dogs. They also studied the changes in conditioned reflexes in dogs brought about by anesthetic and sedative agents.
The History of Surgical Anesthesia

Because of its great importance, the subject of pre-anesthetic medication and post-anesthetic care must be mentioned. As pointed out earlier herein, Claude Bernard (p. 39) was one of the pioneers in this field. Other early contributors included von Steinbüchel (p. 48), Crile (p. 44), Elizabeth Bredenfeld (p. 58), Lundy (p. 60), and Bourne (p. 43).

In 1930 Chauncey Leake read a paper entitled "Chemical Adjuncts to General Anesthesia." Here Leake pointed out that chemical agents were indicated not only for pre-anesthetic hypnosis but also for the regulation of pre-operative metabolism, for aid in the induction of, maintenance of and rapid recovery from direct anesthesia, for the relief of post-anesthetic nausea, and for post-operative analgesia. Leake indicated the need for an extended critical pharmacological and clinical evaluation of the various agents proposed. Leake carried out such a study on depressant drugs used for pre-anesthetic medications and strongly condemned routine pre-anesthetic medication.

P. K. Knoefel in 1933 called attention to the fact that delayed shock produced by prolonged anesthesia with ether and chloroform is due to a concentration and reduction in the volume of the circulating blood resulting from the general stimulation of the sympathetic nervous system including the outpouring of adrenin. Knoefel suggested that possibly amytal with related substances might as pre-medication agents counteract the tendency to produce shock.

A. L. Tatum, A. S. Atkinson, and K. H. Collins of the University of Chicago studied acute cocaine poisoning which frequently follows the clinical use of cocaine as a local anesthetic. They were able to reduce greatly the risk of anesthetic toxicity by the prophylactic administration of a mixture of barbital sodium and paraldehyde in laboratory animals. P. K. Knoefel, R. P. Herwick and A. S. Loevenhart of the University of Wisconsin also worked on the problem of the prevention of local anesthetic poisoning. Working with animals they found sodium amytal of the greatest prophylactic value. They also demonstrated the effectiveness of hypnotic drugs in preventing the con-
Anesthetic Apparatus

vulsant type of intoxication as well as the ineffectiveness of these and other drugs in preventing the paralytic type of intoxication.

N—Anesthetic Apparatus*

Perhaps the first modern gas inhaler was the one that James Watts, an engineer, constructed for Thomas Beddoes. Humphry Davy's "gas" machine is illustrated on page 17 (fig. 6). According to Miller, this, too, was constructed for Davy by Watts.

The ether inhalers in the United States, such as the one perfected by Morton, were soon discarded and replaced by the ether sponge. The sea sponge, probably similar to the sponge of Theodoric of the thirteenth century, was hollowed to fit the face, as mentioned by Miller. It was then saturated with ether. It provided by its extensive surface sufficient ether vapor for the purpose of anesthesia.

In England, closed inhalers were the favored apparatus. The achievement of John Snow and his inhaler has been mentioned. His successor, Joseph T. Clover, published in 1862 an account of his chloroform inhaler by means of which the percentages of chloroform and air could be more accurately regulated than heretofore. Clover, according to Barbara Duncum, following the death of Snow was the acknowledged leader of the anesthetic profession in England.

Mixtures of ether and chloroform were used for anesthesia in the late 1860's. As has been mentioned earlier herein, Colton reintroduced the use of nitrous oxide for anesthetic purposes, during the extraction of teeth. In 1867 D. H. Goodwille's patented inhaler for nitrous oxide gas, ether and chloroform was advertised. This inhaler was similar to that of John Snow and covered the nose as well as the mouth. It was important in that it permitted the mixture of air with the gas.

In the S. S. White Dental Manufacturing Company's catalogue for 1867, according to Miller, is pictured a complete nitrous oxide gas machine. In the same catalogue there is also a picture of an inhaler designed to cover both the mouth and nostrils.

The History of Surgical Anesthesia

Dr. Edmund W. Andrews, as has already been mentioned, introduced the use of a mixture of oxygen with nitrous oxide into the practice of anesthesia in 1868. The feasibility of this method, however, was not demonstrated until Sir Frederic Hewitt many years later adapted it. Hewitt was the first to develop an apparatus that was practicable. By using semi-elastic bags, he overcame the terrific pressures of nitrous oxide and oxygen. The bags were kept almost full from the high pressure tanks by means of an intermittent flow of the gases. The gases were controlled directly by hand valves and the tanks which acted against the high pressures.

Joseph Clover reported in 1874 a supplemental bag which provided for rebreathing a portion of the anesthetic agent, and Clover in 1876 introduced the gas-ether sequence. To do this he added to the bag of his inhaler a tap through which nitrous oxide could be admitted for the production of anesthesia.

S. J. Hayes, a Pittsburgh dentist, in 1882, patented an apparatus for generating and applying anesthetic agents. Ether and chloroform were mixed and heated by means of a water bath.

In 1885, Frederic Hewitt described a face piece used for rebreathing nitrous oxide.

The S. S. White Dental Manufacturing Company in 1899 brought out a machine which measured the relative quantities of the gases. This was their nitrous oxide-oxygen apparatus. It was constructed similarly to a machine that Hewitt had perfected in England.

Charles K. Teter, a Cleveland dentist, while practicing his profession in Upper Sandusky, Ohio, became interested in developing an apparatus for administering nitrous oxide and oxygen as well as other anesthetic agents. His first machine was manufactured in 1903 by the Cleveland Dental Manufacturing Company. It was very well liked, and it is due to some extent to Teter's influence that the use of nitrous oxide-oxygen anesthesia became widespread. Dr. Teter has administered nitrous oxide and oxygen anesthesia more than 100,000 times for the extraction of teeth and the removal of tonsils, without a single fatality.
Anesthetic Apparatus

In 1909, Dr. Teter was appointed chief anesthetist at St. Luke's Hospital in Cleveland. In 1912 he was appointed to the position of special anesthetist at Lakeside Hospital in the same city.

About 1909, according to Heidbrink, the A. C. Clark machine was developed. By means of this machine the maintenance of constant pressure in the bags was attempted. A central valve with a slot for each gas was supposed to proportion the gases. This did not have fine enough control to give good results in gas anesthesia.

From 1906 to 1910, E. I. McKesson, of Toledo, and J. A. Heidbrink, to whom many references have already been made herein, worked independently on an attempt to build a machine which would provide better control of the gases. McKesson invented a machine which produced pressure on the bags individually. This was similar to the Clark machine, but it had a better proportioning valve. In 1910 McKesson perfected the first “intermittent flow” nitrous oxide and oxygen anesthesia machine. It contained an accurate percentage control for the two gases. In 1910 McKesson introduced the principle of fractional rebreathing. He found it possible to save the first part of each expiration for rebreathing. The expiratory valve made provision for the escape of the last part of each expiration.

Meanwhile, Heidbrink was developing his machines. He perfected a machine called the “oo.” Later, after a few minor changes, this machine was called the model “T.” Heidbrink made use of the reducing valve on his machine as a flowmeter. He was an early exponent of “timed anesthesia.”

Willis D. Gatch, in 1910, published his important article on nitrous oxide-oxygen anesthesia produced by his rebreathing method. His apparatus is described therein. Gatch also provided for a sight-feed dropper, and in some cases ether was administered after the gas. Karl Connell also invented a gas machine about this time. In 1918 a government order for gas machines was divided among McKesson, Connell, von Foregger and Heidbrink.

In 1911 J. T. Gwathmey and William C. Woolsey began
The History of Surgical Anesthesia

experimenting with gas machines. They had a nitrous oxide-oxygen apparatus built for them by Langsdorf in 1912. That same year the Ohio monovalve anesthesia machine was put on the market by the Ohio Chemical and Manufacturing Company of Cleveland. This year, too, was the date of the appearance of the Boothby-Cotton sight-feed apparatus. To insure an even flow of gas, this machine provided for the use of automatic reducing valves. In 1914, Boothby furnished accurate calibration for the sight-feed valves.

Richard v. Foregger in 1914 built a nitrous oxide-oxygen machine without a reducing valve. The first Gwathmey apparatus built by von Foregger without reducing valves, but with control valves for oxygen and nitrous oxide, appeared in 1915. H. E. G. Boyle* modified the early Gwathmey machine and it proved so useful that with the addition of a few improvements it is still the standard machine in use in England.

As Miller has said, many others during the period from 1910 to 1920 developed gas machines. These included Coburn, Cunningham, Flagg, Guedel, Peariro, Miller and Morgan.

In 1923, John S. Lundy specified the first Seattle model gas machine. This was a four-valve apparatus for the utilization of oxygen, nitrous oxide, carbon dioxide and ethylene. This was the first apparatus to have all four gases. Dr. Lundy in 1925 worked with Dr. Heidbrink on the first Lundy-Heidbrink Model. One of the first machines was delivered to the Mayo Clinic on August 20, 1925. This was followed in 1932 by the Lundy-Heidbrink kinetometer gas machine, which was better adapted for absorber use.

O—Records and Statistics

As stressed by Beecher, the introduction of anesthesia into the clinic altered the practice of medicine perhaps more than any other single advance. Record keeping, that is the description and charting of the patients' course during anesthesia, is, therefore, of first importance. While the early historical accounts are in their essence records, as far as can be determined no exact chartings were made until 1894. On November 30, 1894 (pos-

* Personal communication from Dr. Noel Gillespie.
Records and Statistics

possibly earlier), E. A. Codman of the Massachusetts General Hospital at the suggestion of F. B. Harrington, his superior, began to make individual charts. These charts gave the following information: (1) Name of operation, (2) Name of surgeon, (3) Exact time the ether administration was begun, (4) Exact time the ether administration was ended, (5) Amount of ether necessary to anesthetize the patient, (6) Drugs previously administered, (7) The amount of mucus, (8) Condition of the heart, (9) A recording of the pulse rate throughout the entire operation and (10) A charting of the respiration throughout the entire operation. Harvey Cushing also was impressed early in his career by the importance of keeping individual anesthetic records, being convinced that it would aid his technic of ether administration. Beecher found an anesthesia chart dated by Cushing as of July 17, 1895. His chart was somewhat different from Codman’s since he thought the most important thing to be observed was the careful recording of the pulse rate throughout the entire operation. His charts stressed temperature, pulse, and respirations. Cushing also added in his own handwriting things he thought were significant for each case, such as vomitus—time and amount, time when the patient came out of the ether, behavior, the time when pulse came down, and so forth.

On a trip to Italy in 1901, Cushing met Dr. Orlandi, a colleague of Scipione Riva-Rocci. Dr. Riva-Rocci had introduced his sphygmomanometer in 1896, and at the time of Dr. Cushing’s visit a “home-made” adaptation of Riva-Rocci’s blood-pressure apparatus was in routine daily use at the bedside of every patient at the old Ospedale di S. Matteo in Pavia. Dr. Orlandi presented a model of the inflatable armlet which they employed to Dr. Cushing and Cushing introduced practically the same form of this apparatus at Johns Hopkins Hospital. He insisted on its routine use for all of his operations, and Cushing’s efforts can be said to mark the beginnings of blood pressure determinations in this country.

G. W. Crile also was quick to sense the importance of blood pressure determinations. After Cushing brought the Riva-Rocci
The History of Surgical Anesthesia

apparatus to Crile's attention, the latter employed it in a series of experimental and clinical cases where before he had used the Gärntner tonometer. Crile in one of his studies, working with dogs, determined arterial pressure under complete anesthesia. His findings are of interest. He found the minimal pressure to be 80; the maximal pressure 170; the medium pressure 125. For this experimental study on blood pressure in surgery, Crile was awarded in 1923 the Cartwright prize of the Alumni Association of the College of Physicians and Surgeons, New York City.

Following the early reports of Codman and Cushing, as well as those of Crile, McKesson in 1907 began to keep accurate records of blood pressure during anesthesia. Other anesthetists were soon to follow his lead. Gilbert Brown, of Adelaide, Australia, wrote a paper for the Lancet in 1911 built around his anesthesia records on 300 cases. John Lundy popularized the use of record keeping in the Pacific Northwest as early as 1923. Waters in 1927 kept extensive records including pre- and post-operative data. In 1934 E. A. Rovenstine of Madison, Wisconsin, pointed out that statistical reports relating to anesthesia lacked convincing (that is, statistically reliable) evidence. He stressed the need for uniformity in collecting, correlating and reporting statistics of anesthesia. He recommended a system for collecting comprehensive data for surgical and anesthetic procedures and the use of tabulating cards and a sorting machine to make data immediately available for statistical studies. In 1933 he brought out the first Annual Statistical Report based on these methods, and this has appeared annually ever since. In 1937 Nosworthy wrote on the value of anesthetic records. Since that time much progress has been made in making records uniform, but there is still much to be done. The American Society of Anesthetists in 1936 established a committee on records to study this problem. It established a uniform method for the keeping of anesthetic records and this system is now fairly widely employed. Approximately thirty-five anesthetists or institutions in this country have expressed a desire to employ this method. Anesthetists in England and Australia have also shown an interest.
Concluding Comments

That the use of records and statistics has met with a great deal of enthusiasm is suggested by the following important recent contributions. Eisenhart, Simpson, and Gillespie254 of the Departments of Mathematics and Anesthesia, the University of Wisconsin, cooperated on a mathematical analysis, a statistical comparison of circulatory complications after abdominal operations in which ether or cyclopropane was used as the anesthetic agent. Nosworthy255 suggested a simple method of grouping records by means of cards. Saklad, Gillespie, and Rovenstine256 have recommended a method for the collection and analysis of statistics in cases of inhalation therapy. And finally, Majors Wangeman and Martin257 have presented an interesting study indicative of the successful use of the modified Hollerith punch card systems at two Army General Hospitals in the recording of surgical and anesthetic dangers.

P—Concluding Comments

A recent addition to the anesthetists’ armamentarium is curare. This new agent prevents impulses from the motor nerves to the muscles without affecting the circulation. As pointed out by Dittrick,258 curare was well known in the sixteenth century and reported on by botanists and explorers. Certain Indian tribes have used curare for centuries in South America in hunting and fighting. T. Spencer Wells259 in 1859 reported its use in three cases of tetanus. It is now used as a complementary agent in general anesthesia. Griffith and Johnson260 in 1942 and S. C. Cullen261 in 1943 reported its use in the successful abolition of muscular rigidity in abdominal operations.

This account will be concluded with the evidence at hand which suggests that anesthesiology has reached a state of maturity. The untiring and ceaseless effort of the late Francis Hoeffer McMechan (1879-1939) and of Mrs. McMechan of Cleveland in developing the professional aspects of anesthesia throughout the world has had its lasting effects. McMechan helped in the organization of the American Association of Anesthetists in 1912. Feeling
The History of Surgical Anesthesia

that a journal on anesthesia was greatly needed, he appealed to Dr. Joseph MacDonald, the publisher of the American Journal of Surgery. Subsequently McMechan edited a Quarterly Supplement of Anesthesia and Analgesia, which was added to the American Journal of Surgery, from 1914 until 1922. In 1922 the International Anesthesia Research Society was organized and Dr. McMechan became the editor of its official organ, Current Researches in Anesthesia and Analgesia, the first professional journal of the specialty. After McMechan's death in 1939, Howard Dittrick became the editor, and Dr. McMechan's wife, Laurette van Varseveld McMechan, the assistant editor. Mrs. McMechan, a direct descendant of the sister of Baron Larrey, and Dr. Dittrick have carried on McMechan's work in a way that has endeared them to the profession.

One development in technic may be mentioned. This is the method for continuous spinal anesthesia using a malleable needle, as suggested by William T. Lemmon. Lemmon has observed during the past several years that sometimes spinal anesthesia has failed to take effect, and that in many cases the effect, once produced, is dissipated too soon. To remedy this, he devised an apparatus and injected procaine hydrochloride into the spinal fluid. As the effect of the first injection disappears, subsequent injections are carried out. To prevent or ameliorate a toxic condition which sometimes occurs, a 10 per cent solution of glucose is administered intravenously to the patient. The advantage of the Lemmon method is that it makes possible the administration of minimal effective doses, thereby helping to make intrathecal administration more flexible and thus endowing it with one of the main advantages of inhalation anesthesia.

Edwards and Hingson, by virtue of Hingson's familiarity with continuous spinal anesthesia, developed continuous caudal analgesia for obstetrics, a recent contribution. Edward B. Tuohy added an improvement to the technic of Edwards and Hingson. He uses an ureteral catheter instead of a malleable needle. The first accounts of caudal anesthesia are those of Sicard and Cathelin, published in 1901.

[90]
Concluding Comments

Two important contributions have been made to increase the safety of the use of anesthetic gases. Because of a fatal explosion of an anesthetic agent in Boston in 1938, Philip Woodbridge, then of the Lahey Clinic, J. Warren Horton, of the Massachusetts Institute of Technology, and the late Karl Connell, of Branch, New York, made an investigation. The fatal explosion seemed to have been caused by the ignition of anesthetic gases by static spark. These investigators concluded that the ideal method for the prevention of any spark discharge which might ignite an explosive mixture would be to interconnect all objects and persons by conductors between these bodies or from these bodies to a connecting floor. They felt that this method was impracticable, however. They developed “high resistance intercoupling” and by its use in the operating room found it possible to reduce certain specific hazards of frequent occurrence.

G. W. Jones, R. E. Kennedy and G. J. Thomas have investigated the explosive properties of cyclopropane. This was a co-operative project between the United States Bureau of Mines and representatives from the School of Mines at the University of Pittsburgh, the American Society of Heating and Ventilating Engineers and various hospitals and industries in and around Pittsburgh. This committee advised that the practice of using a mixture of 20 per cent cyclopropane and 80 per cent oxygen be discouraged because such mixtures are violently explosive and have led to fatal accidents. A means of eliminating explosion hazards was found. It consisted in reducing the oxygen content of the anesthetic mixture by the addition of inert gases. With continued dilution of the mixtures with inert gases, a concentration of oxygen is finally reached at which the mixtures are no longer explosive or inflammable.*

In this country, two events of significance were the formation

* Some anesthetists believe that if this plan were adopted it would result in more fatalities from anoxia than there are now from explosions. They base their statements on their belief that the remedy results in a lower oxygen content than that of a normal atmosphere.
The History of Surgical Anesthesia

in 1937 of the American Board of Anesthesiology, Inc., as an affiliate of the American Board of Surgery, Inc. In 1941, the American Board of Anesthesiology, Inc., was established as a separate major board. Secondly, the first meeting of the Section on Anesthesiology of the American Medical Association was held in 1941.

Perhaps the best evidence in the literature which tends to show that anesthesia has matured is that recently offered by Ralph Waters. Waters emphasized the viewpoint that clinical practice in anesthesia is handicapped by failure to correlate and utilize existing knowledge. Such an observation by a mature thinker in this field shows that anesthesiology is now concerning itself not only with new developments in technics and new drugs, important as these are, but also with such matters as the one mentioned by Waters: “Permanent improvement will develop in the future, as it has come in the past, mainly through consideration of scientific facts—laborious learning, imaginative insight and accumulative application.”

* There are now fifteen American Boards in the various medical specialties. The purpose of these boards is to improve the standards of graduate medical education, the training and the practice of medical specialties in the United States and Canada. Each of the boards certifies as specialists those candidates whose general qualifications, professional standing, and special training and practice meet with their approval. In addition successful candidates must pass comprehensive examinations before they are made diplomates.
References for Section I

6. HERODOTUS, Book 4, Chapter 75, for original description.

10. FROBENIUS: An account of a spiritus vini aethereus ... Phil. Tr. Roy. Soc. 36:269-289 (Mar.-Apr.) 1790.

13. PARACELSUS: Opera medico-chimica sive paradoxa ... Frankfort, 1605. p. 125.

15. ELLIOTSON, John: Numerous cases of surgical operations without pain in the mesmeric state; with remarks upon the opposition of many members of the Royal Medical and Chirurgical Society and others to the reception of the inestimable blessings of mesmerism ... Philadelphia, Lea and Blanchard, 1843. 56 pp.

19. RICE, N. F.: Trials of a public benefactor, as illustrated in the discovery of etherization. New York, Pendyke and Russell, 1858. p. 82.

26. TAYLOR, Frances L.: Crawford W. Long
The History of Surgical Anesthesia

42. Anesthetic agents. Tr. A. M. A. 1:176-224, 1848.
45. ADAMS, R. C.: Intravenous anesthesia: chemical, pharmacologic and clinical consideration of the anesthetic agents including the barbiturates. Thesis, University of Minnesota, Graduate School, 1940.
53. ———: A further contribution on local medication of the spinal cord, with cases. M. Rec. 33:291-293 (Mar. 17) 1888.

[94]
References

76. Roux: Quoted by Sutton, W. S. (see 73).

77. Y’Yhedy: Quoted by Sutton, W. S. (see 73).

82. ---: Obstetrical analgesia; a further study, based on more than twenty thousand cases. Surg., Gynec. & Obst. 53:190-195 (Aug.) 1930.

85. Becker: Quoted by Luckhardt, A. B., and Lewis, Dean (see 84).

The History of Surgical Anesthesia

85. Nunneley, Thomas: Quoted by Luckhardt, A. B. (see 89).
108. [Oldenburg, Henry]: An account of the rise and attempts, of a way to convey liquors immediately into the mass of blood. Phil. Tr. Roy. Soc. 1:128-130 (Dec. 4) 1665.
109. [Clarck, Timothy]: A letter, written to the publisher by the learned and experienced Dr. Timothy Clarck, one of his majesties physicians in ordinary, concerning some anatomical inventions and observations, particularly the origin of the injection into veins, the transfusion of blood, and the parts of generation. Phil. Tr. Roy. Soc. 3:672-682 (May 18) 1668.
113. Denis, Jean-Baptiste, and Emmerez, ——: A letter concerning a new way of curing sundry diseases by transfusion of blood... Phil. Tr. Roy. Soc. 2:489-504 (July 22) 1667.
References

115. [Denis, Jean-Baptiste]: An extract of a letter written by J. Denis, Doctor of Physick, and Professor of Philosophy and the Mathematicks at Paris, touching a late cure of an inveterate phrensy by the transfusion of blood. Phil. Tr. Roy. Soc. 2:617-624 (Feb. 10) 1667/8 (i.e., 1668).

139. Fulton, J. F.: Personal communication to the author.

140. Lundy, J. S.: The barbiturates as anesthetics, hypnotics and antispasmodics: their use in more than 1000 surgical and nonsurgical clinical cases and in operations on animals. Anesth. & Analg. 8:360-365 (Nov.-Dec.) 1929.

143. —: Experience with sodium ethyl (1-methylbutyl) barbiturate (nembutal) in more than 2,300 cases. S. Clin. North America. 11:909-915 (Aug.) 1931.

148. —: Personal communication to the author.

159. [HOOK, ROBERT]: An account of an experiment made by M. Hook, of preserving animals alive by blowing through their lungs with bellows. Phil. Tr. Roy. Soc. 2:539-540 (Oct. 21) 1667.

161. MACEWEN, WILLIAM: Clinical observations on the introduction of tracheal tubes by the mouth instead of performing tracheotomy or laryngotomy. Brit. M. J. 2:122-124 (July 24); 163-165 (July 31) 1880.

173. BARTHÉLEMY and DUFOR: L’anesthésie dans la chirurgie de la face. Presse méd. 15:475-476 (July 27) 1907.

174. MELTZER, S. J., and AUER, JOHN: Con-
References

184. HEIDBRINK, J. A.: Personal communication to the author.

187. ACKERKNECHT, ERWIN H.: Personal communication to the author.

195. BÉRILLON, EDGAR: L'œuvre scientifique de Paul Bert ... Paris, Picard-Bernheim; Auxerre, Georges Rouillé, 1867. 115 pp. The author is indebted to Mrs. Fred Hitchcock of Columbus, Ohio, for furnishing him with an excellent translation of this work.

198. ——: Report of the second Hyderabad chloroform commission. Lancet. 1:419-519 (Jan. 18); 486-510 (Mar. 1); 1369-1393 (June 21) 1890.

The History of Surgical Anesthesia

206. —: The self administration of nitrous oxide. Indianapolis, Indiana, privately printed, c1913; c1915, 80 pp.

207. —: Third stage ether anesthesia: a sub-classification regarding the significance of the position and movements of the eyeball. Nat. Anesth. Res. Soc. Bull. No. 3 (May) 1920. 4 PP.

217. BARBOUR, H. G., and BOURNE, WESLEY: The effects of sodium amytal on liver function; the rate of secretion and composition of the urine; the action, alkali reserve, and concentration the blood; and the body temperature. Surg., Gynec. & Obst. 51:356-360 (Sept. 1930).

References

234E. KNOEFEL, P. K.; GWATHMEY, J. T.: Personal communication to the author.

235. BEDDOES, THOMAS, and WATTS, JAMES: Considerations on the medicinal use and on the production of factitious airs. Bristol, 1795.

238. TETER, C. K.: Personal communication to the author.

239. HEIDBRINK, J. A.: Personal communication to the author.

242. GWATHMEY, J. T.: Personal communication to the author.

243. COOK, E. H.: Personal communication to the author.

249. BROWN, GILBERT: Notes on 300 cases of general anesthesia combined with narcotics. Lancet. 1:1005-1006 (April 15) 1911.

256. SAKLAD, MEYER; GILLESPIE, NOEL, and ROVENSTINE, E. A.: Inhalation therapy, a method for the collection and analysis of statistics. Anesthesiology. 5:359-369 (July) 1944.

259. Wells, T. S.: Three cases of tetanus in which "woorara" was used. Proc. Roy.

[101]
The History of Surgical Anesthesia

A Chronology of Events
RELATING TO
Anesthesiology and Allied Subject

1. 4004 B.C. according to the good Bishop Ussher. Old Testament
 "And the Lord God caused a deep sleep to fall upon Adam, and
 and He took one of his ribs, and closed up the flesh instead the
 Genesis II:21.

2. c2250 B.C. Nippur
 Babylonian clay tablet reveals remedy for pain of dental caries.
 used was made by mixing henbane seed with gum mastic.

3. c1200 B.C. Greece Aesculapius
 The God of Medicine was supposed to have used a potion called
 to produce insensibility for his surgical patients.

4. 1149 B.C.(?) Greece Helen of Troy
 The daughter of Zeus, according to the Odyssey, cast a drug (?
 into wine “to assuage suffering, and to dispel anger, and to caus
 fulness of all ills.”

5. c550 B.C. India
 Susruta mentions the use of henbane and hemp to produce inse
 to pain.

6. c450 B.C. Greece Herodotus
 Inhalation of the vapor of hemp by the Scythians.

7. c255 B.C. China Pien Ch’iao
 A Chinese physician who, according to the Chinese Annals of
 performed major operations on patients drugged with wine (hemp probably was added).

8. 54-68 A.D. Roman Empire Pedanius Dioscorides
 The Greek army surgeon, in the service of Nero, recommended
 administration of mandragora wine for insomnia or the pain of
 operations and cauterization.

9. 79 Roman Empire Pliny
 Description of the mandragora wine. “Yet it may be used safely
 for to procure sleepe, if there be a good regard had in the dose .
 it is an ordinarie thing to drinke it against the poysion of serpen
 wise before the cutting, cauterizing, prickig or launcing of any n
 to take away the sence and feeling of such extreme cures.”

10. 220(?) China Hua T’o
 Famous Chinese surgeon administered wine containing a $e
 effervescent powder (seed kernel of hemp?) to patients before
 operations. Intoxication and complete insensibility were produc
The History of Surgical Anesthesia

11. c800 Bavaria
Sigerist has found that a recipe for the “sophoric sponge” was contained in the Bamberg Antidotarium of the 9th century.

12. c800 Italy
Sudhoff found a similar recipe in a Monte Cassino Codex of the same period. The sponge was steeped in a mixture of opium, hyoscyamus, mulberry juice, lettuce, hemlock, mandragora and ivy, and dried. When the sponge was moistened, the vapor it produced was ready to be inhaled by the patient.

13. c950 Spain
Abū Bekr Ḥāmidb, Samajūn
Composed important book on drugs, Collection of sayings of old and new physicians and philosophers on simple drugs.

14. c1100 Italy
Nicolaus Salernitanus
Recommends use of soporific sponge to induce anesthesia.

15. c1200 Italy
Hugh of Lucca
Preparation of a soporific agent with opium, hemlock, henbane and mandragora for anesthetization of patients by use of somniferous sponge for minor operations. To revive them, a sponge filled with vinegar was placed under the nostrils.

16. c1275 Spain
Raymundus Lullius
Discovery of “sweet vitriol.”

17. c1363 France
Guy de Chauliac
Report of the use of narcotic agents, especially opium and the “sleeping sponge,” to relieve pain during surgical procedures. The untoward effects that sometimes resulted from their use were asphyxia, “congestions” and death.

18. c1540 Switzerland
Paracelsus
Discovery of the soporific effect of sweet vitriol and recommendation of its use for painful diseases.

19. 1540 Germany
Valerius Cordus
Description of the synthesis of ether.

20. 1562 England
William Bullein
First known mention in an English printed book of an anesthetic agent.

21. c1564 France
Ambroise Paré
Obtained local anesthesia by compression of nerves.

22. 1589 Italy
Giambattista della Porta
Continuation of the use of inhalation anesthesia. An infusion of the various soporific drugs was made and the vapor of this infusion was inhaled by the patient. A deep sleep resulted, the operation was performed and the patient, on awakening, did not remember what had happened to him.

23. c1600 Italy
Valverdi
Use of a kind of regional anesthesia, by compression of the nerves and the blood vessels of the region to be operated on.

24. 1646 Italy
Marco Aurelio Severino
The use of freezing mixtures of snow and ice for surgical anesthesia.
A Chronology of Events

25. 1656 England Sir Christopher Wren
First experiments with intravenous therapy.

26. 1665 Germany Johann Sigismund Elsholtz
First attempt at intravenous anesthesia.

27. 1665 England Richard Lower
Transfused blood to animals, first known time.

28. 1667 France Jean B. Denis
First transfusion of animal blood to man.

29. 1730 Germany W. G. Frobenius
“Sweet vitriol” was named “ether.”

30. 1766-1800 France Franz Anton Mesmer
Development of the theory of “vitalism,” a revamping of the doctrine of the “power of divine touch” for the prevention of human suffering.

31. 1771 England Joseph Priestley
Discovery of oxygen.

32. 1771 Sweden Carl Wilhelm Scheele
Independent discovery of oxygen.

33. 1772 England Joseph Priestley
Discovery of nitrous oxide.

34. 1779 Holland-England Johannes Ingenhousz
Discovery of ethylene.

35. 1784 England James Moore
Production of local anesthetics of the extremity by compression of the nerve trunks.

36. 1794 England Richard Pearson
Use of inhalation of ether in the treatment of phthisis.

37. 1795 England James Watts
Construction of a gas inhaler for Thomas Beddoes.

38. 1798 England Sir Humphry Davy
Discovery of the analgesic and exhilarating effects of nitrous oxide.

39. 1799 England Sir Humphry Davy
Introduction of nitrous oxide into medical practice at Beddoes’ Pneumatic Institute.

40. 1800 England William Allen
Lecturer on chemistry at Guy’s Hospital, demonstrated in the presence of Astley Cooper and others the results of inhalation of nitrous oxide, noting especially the loss of sensation to pain.

41. 1805 United States John C. Warren
The use of ether by inhalation to relieve the last stages of pulmonary inflammation.

42. 1806 Prussia Friedrich A. W. Sertürner
The extraction of morphine from opium.
The History of Surgical Anesthesia

43. 1807 France D. J. Larrey
No pain in amputations done on battlefield at very low temperatures (−19°C).

44. c1815 Germany Maxime de Puységur
"Discovery" of somnambulism, which was used to relieve the pain of surgical operations.

45. 1818 England Michael Faraday
Publication of an account of the pain-allaying effects of ether in the Journal of Science and Art.

46. 1819 United States Stockman
Demonstration of the exhilarating effects of nitrous oxide.

47. 1824 England Henry Hill Hickman
Painless operations carried out on animals after the administration of carbon dioxide gas.

48. 1831 Scotland Latta
Introduction of the practice of intravenous infusion of saline solution to patients suffering from shock.

49. 1831 United States Samuel Guthrie
Discovery of chloroform.

50. 1831 France Eugène Soubeiran
Discovery of chloroform.

51. 1831 Germany Justus von Liebig
Discovery of chloroform.

52. 1835 France Jean Baptiste Dumas
Definition of the physical and chemical properties of chloroform.

53. 1839 United States Isaac Ebenezer Taylor and James Augustus Washington
Practice of hypodermic injection by puncture of the skin with a lancet and use of a syringe to throw the agent (solution of morphine) under the skin.

54. c1840 Scotland and India. John Elliotson and James Esdaile
Painless operations in many cases through the use of somnambulism reported.

55. 1842 United States W. E. Clarke
Administration of ether to Miss Hobbie for the painless extraction of one of her teeth by Dr. Elijah Pope (January, 1842). (See Lyman, H. M.: Artificial anesthesia. N. Y., Wood, 1881, p. 6.)

56. 1842 United States Crawford Williamson Long
James Venable submitted to an operation on March 30, 1842, for removal of a small tumor of the neck while he was under the influence of ether.

57. 1844 United States Horace Wells
Inhalation of nitrous oxide, administered by G. Q. Colton, for the extraction of Wells' tooth by Dr. John Riggs. (Dec. 11, 1844.)

58. 1845 United States Horace Wells
Lecture before Dr. John C. Warren's class at Harvard on "The use of nitrous oxide for the prevention of pain." In the evening he demonstrated the use of the agent as an anesthetic agent for the extraction of a tooth. The demonstration was not entirely successful.
A Chronology of Events

59. 1846 United States Charles T. Jackson
Suggestion of the use of pure ether as an anesthetic agent to Morton, who successfully administered it for the painless extraction of a tooth.

60. 1846 United States William T. G. Morton
Demonstration of the practicability of ether anesthesia in an operation performed by Dr. J. C. Warren in the Massachusetts General Hospital, October 16.

61. 1846 England Robert Liston
Two operations performed at University College Hospital, London, under ether greatly stimulated the use of ether on the continent.

62. 1846 England Peter Squire
Built the first British ether inhaler. Morton of the U.S. constructed the first ether inhaler.

63. 1847 France M. J. P. Flourens
Description of the anesthetic action of chloroform in animals.

64. 1847 England Jacob Bell
Description of the anesthetic action of chloroform.

65. 1847 Scotland Sir James Simpson
Introduction of ether analgesia in childbirth.

66. 1847 Russia N. I. Pirogoff
Description of rectal anesthesia with ether.

67. 1847 England John Snow
The first physician anesthetist began the administration of ether at St. George's Hospital, London. Published his book on ether.

68. 1847 Scotland Sir James Simpson
Successful use of chloroform as an anesthetic agent for major operations and midwifery.

69. 1848 England Thomas Nunneley
Description of the anesthetic qualities of a mixture of ether and an alcoholic solution of chloroform. This was named the “A. C. E.” mixture.

70. 1849 France V. Regnault and J. Reiset
Experimentation on carbon dioxide absorption.

70A. 1851 United States J. F. B. Flagg
Publication of the first American “textbook” on anesthesia.

71. 1853 England John Snow
Successful administration of chloroform to Her Majesty, Queen Victoria, at the birth of Prince Leopold. The physician was Sir James Clark. This event greatly stimulated the use of analgesia in obstetrics.

72. 1853 United States Edward R. Squibb
Manufacture of ether by the revolutionary method involving the continuous passage of steam heat through lead coils.

73. 1853 Scotland Alexander Wood
Invention of the modern metallic hollow needle. Wood also injected a solution of morphine under the skin near the vicinity of the painful part to afford relief from pain.

74. 1853 France Charles Gabriel Pravaz
Development of the hypodermic syringe.
The History of Surgical Anesthesia

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Person/Invention</th>
</tr>
</thead>
<tbody>
<tr>
<td>1855</td>
<td>Germany</td>
<td>Gaedicke</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isolation of the alkaloid of the leaves of the coca plant, which was called erythroxylin.</td>
</tr>
<tr>
<td>1856</td>
<td>England</td>
<td>John Snow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Discovery of the anesthetic properties of amylene.</td>
</tr>
<tr>
<td>1858</td>
<td>England</td>
<td>John Snow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posthumous publiction of his textbook, On chloroform and other anesthetics.</td>
</tr>
<tr>
<td>1860</td>
<td>Germany</td>
<td>Albert Niemann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The alkaloid of coca leaves obtained in pure form and called “cocaine.” Report of the numbing effect of this drug on the tongue.</td>
</tr>
<tr>
<td>1862</td>
<td>England</td>
<td>J. T. Clover</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Published account of new chloroform inhaler for regulation of the percentage mixture of chloroform and air.</td>
</tr>
<tr>
<td>1863</td>
<td>United States</td>
<td>G. Q. Colton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Popularization of the use of pure nitrous oxide in dental operations. The use of this gas had been almost abandoned since its introduction by Wells in 1844.</td>
</tr>
<tr>
<td>1867</td>
<td>United States</td>
<td>S. S. White Dental Manufacturing Co.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction of inhaler covering nose and mouth.</td>
</tr>
<tr>
<td>1868</td>
<td>United States</td>
<td>Edmund W. Andrews</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction of the use of oxygen with nitrous oxide in anesthetic practice.</td>
</tr>
<tr>
<td>1868</td>
<td>United States</td>
<td>W. W. Greene</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advocacy of the hypodermic use of morphine during inhalation anesthesia.</td>
</tr>
<tr>
<td>1868</td>
<td>England</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Suggestion that nitrous oxide be compressed into liquid form was made in the British Medical Journal.</td>
</tr>
<tr>
<td>1869</td>
<td>Germany</td>
<td>F. Trendelenburg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of preliminary tracheotomy as a mode of administration of an endotracheal anesthetic.</td>
</tr>
<tr>
<td>1871</td>
<td>United States</td>
<td>Henry Pickering Bowditch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Investigation of the biologic properties of blood plasma and serum.</td>
</tr>
<tr>
<td>1871</td>
<td>United States</td>
<td>Johnston Brothers</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compression of nitrous oxide into wrought iron cylinders.</td>
</tr>
<tr>
<td>1871</td>
<td>Italy</td>
<td>A. Spessa</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Injection of a solution of morphine into a fistulous tract before surgical intervention.</td>
</tr>
<tr>
<td>1872</td>
<td>France</td>
<td>P. C. Oré</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloral hydrate injected intravenously to induce general anesthesia.</td>
</tr>
<tr>
<td>1873</td>
<td>Scotland</td>
<td>Alexander Bennett</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstration of the anesthetic properties of cocaine.</td>
</tr>
<tr>
<td>1875</td>
<td>France</td>
<td>Claude Bernard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pre-anesthetic medication with morphine suggested.</td>
</tr>
</tbody>
</table>
A Chronology of Events

91. 1876 England J. T. Clover
Introduction of gas-ether sequence.

92. 1877 England J. T. Clover
Introduction of portable inhaler with regulation of flow of ether.

93. 1878 Germany V. von Anrep
Investigation of the pharmacology of cocaine.

94. 1878 Scotland William Macewen
Introduction of anesthesia produced by tracheal tube inserted through the mouth.

95. 1880 Russia Klikovich
Introduction of the use of nitrous oxide in obstetrics.

96. 1881 India Alexander Crombil
Advocacy of the injection of morphine prior to the administration of chloroform. This was probably the first type of preanesthetic medication.

97. 1881 France R. Moutard-Martin and Charles Richet
First injection of gum saline into the whole animal body.

98. 1882 United States S. J. Hayes
An apparatus for generating and applying anesthetic agents was patented. Ether and chloroform mixtures were heated by means of a water bath. Air which was pumped through the mixture was charged with the anesthetic vapor.

99. 1882 Germany August von Freund
Discovery and description of cyclopropane.

100. 1884 Bohemia & United States Carl Koller
The value of cocaine for local anesthesia was expounded.

101. 1884 France Daniel Mollière
Rectal anesthesia re-introduced, but because of the severe injuries to the mucosa which resulted, the method was discarded.

102. 1885 United States William Stewart Halsted
Introduction of nerve block anesthesia with cocaine.

103. 1885 United States J. Leonard Corning
Spinal anesthesia was attempted by injection of the anesthetic agent between the spinous processes of the lower thoracic vertebrae. Anesthesia in the legs and genitalia resulted. This is the first recorded instance of successful peridural anesthesia.

104. 1885 United States J. Leonard Corning
Published his book Local Anesthesia.

105. 1887 United States J. Leonard Corning
Production of regional anesthesia by injection around the cutaneous antibrachii medialis nerve and production of anesthesia of the skin supplied by it.

106. 1887 England Sir Frederick W. Hewitt
Devised a machine for administration of nitrous oxide and oxygen.

107. 1888 Switzerland Redard
Ethyl chloride used as a local anesthetic agent.
The History of Surgical Anesthesia

108. 1888 England Sir Frederick W. Hewitt
Published handbook, *Select methods in the administration of nitrous oxide and ether.*

109. 1889 United States(?) G. H. Hurd
Apparatus for mixing chloroform vapor and nitrous oxide introduced.

110. 1891 Germany Giesel
Tropacocaine isolated.

111. 1891 Germany Heinrich Quincke
Lumbar puncture demonstrated.

112. 1892 Germany Carl Ludwig Schleich
Demonstration of infiltration anesthesia by intracutaneous injection of dilute solutions of various drugs.

113. 1892 England Sir Frederick W. Hewitt
Introduced the first practical gas and oxygen apparatus.

114. 1893 England Sir Frederick W. Hewitt
First edition of *Anesthetics* published.

115. 1893 England
Society of Anaesthetists (London) founded.

116. 1894 Sweden H. J. Carlson
Discovery that ethyl chlorate produced a sound sleep in some dental patients. Confirmation by Thiessing. Ethyl chlorate was subsequently used for general anesthesia.

117. 1894 United States E. A. Codman
Introduction of records especially of pulse rate during anesthesia.

118. 1894 United States J. Leonard Corning
Introduction of cocaine directly into the medullary canal.

119. 1895 Germany Alfred Kirstein
Introduction of intratracheal tubes via the first direct-vision laryngoscope.

120. 1897 United States John Abel
Discovery of epinephrine.

121. 1897 Germany Heinrich Braun
Advocated the addition of epinephrine to cocaine solution to decrease the rate of absorption and to increase the duration of anesthesia.

122. 1897-98 United States Rudolph Matas
Modification of the Fell-O’Dwyer apparatus for the relief of acute surgical pneumothorax. This provided for the maintenance of anesthesia during artificial respiration.

123. 1898 Germany August Bier
First successful clinical use of spinal anesthesia.

124. 1899 United States S. S. White
Gas machine which proportioned gases.

125. 1899 France Théodore Tuffier
Development of spinal anesthesia.
A Chronology of Events

126. 1899 Germany H. Dresser
Introduction of methyl-propyl-carbinol-urethane (hedonal).

127. 1899 Germany Korff
Basis of “twilight sleep.” Recommendation of injection of combination of scopolamine and morphine or scopolamine and narcophone for anesthesia.

128. 1899 Germany C. L. Schleich

128A. 1899 United States Dudley Tait and Guido Caglieri
First use of spinal anesthesia in the United States, October 26.

129. 1899 United States Rudolph Matas
First report of true spinal anesthesia for surgical operations in the United States.

130. 1901 France M. F. Cathelin and M. A. Sicard
Independent discoverers of epidural administration of cocaine by the caudal route.

131. 1902 United States Charles K. Teter
Introduction of the second machine for the administration of nitrous oxide and oxygen.

132. 1903 France E. Fischer and J. von Mering
Synthesis of veronal (barbital).

133. 1903 France E. Fourneau
Introduction of stovaine.

134. 1904 Germany Alfred Einhorn
Discovery of procaine (novocain).

135. 1905 Russia N. P. Krawkow and co-workers
Demonstration of the value of hedonal as an intravenous anesthetic agent.

136. 1906 United States
The Clark gas machine was developed. A central valve with a slot for each gas was used to proportion the gases.

137. 1906 United States Alice Magaw
Report on production of anesthesia with ether by the drop method 14,000 times without a death.

138. 1907 United States E. I. McKesson
Popularized the use of tests of blood pressure in anesthesia.

139. 1907 Germany E. Payr
Report on the injection of the abdominal wall with eucaine and, after performance of cystotomy, infiltration of the periprostatic tissues through the mucosa of the bladder before enucleation of the prostate gland.

140. 1907 France Barthélemy and Dufour
Advocate use of the insufflation principle of endotracheal anesthesia.

141. 1907 United States C. C. Guthrie and F. H. Pike
Excellent results in replacement of blood by plasma and serum experimentally.
The History of Surgical Anesthesia

142. 1908 United States Yandell Henderson
Demonstration of the value of oxygen and carbon dioxide for the purpose of overcoming asphyxia from anesthesia as well as from other causes.

143. 1908 United States William Crocker and Lee Irving Knight
Ethylene was the cause of losses of many carnations in Chicago. Flowers, placed in greenhouses, would "go to sleep," whereas buds already showing petals failed to open.

144. 1908 United States G. W. Crile
First report on "anoci-association."

145. 1908 Spain J. Goyanes
Introduction of intra-arterial anesthesia.

146. 1909 Germany August Bier
Introduction of a method of local anesthesia by the intravenous injection of procaine.

147. 1909 United States Arthur E. Guedel
Introduction of self-administration of nitrous oxide in obstetrics and office surgery.

148. 1909 Germany Ludwig Burkhardt
Chloroform and ether used intravenously.

149. 1909 United States S. J. Meltzer and John Auer
Successful use of intratracheal insufflation in animals.

150. 1909 United States C. A. Elsberg
Successful use of intratracheal insufflation in a human being.

151. 1910 Germany R. Kümmell
Successful anesthesia produced by the intravenous injection of hedonal.

152. 1910 United States E. I. McKesson
Perfection of the first "intermittent flow" nitrous oxide and oxygen anesthesia apparatus with an accurate percentile control for the two gases. Introduction of fractional rebreathing.

153. 1910 United States W. D. Gatch
Introduction of ether sight-feed apparatus.

154. 1910-11 United States J. A. Heidbrink
Development of "timed-anesthesia," in which nitrous oxide and oxygen instead of nitrous oxide and ethyl chloride were used. Use of reducing valves as flowmeter.

155. 1911-12 United States Karl Connell
Introduction of a gas machine.

156. 1912 United States Ohio Monovalve anesthesia machine patented and put on the market.

157. 1912 United States Walter M. Boothby and F. J. Cotton
Introduction of reducing valves and sight-feed apparatus.

158. 1912 United States
First Gwathmey-Woolsey gas machine was built by Langsdorf.
A Chronology of Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>159</td>
<td>Spain</td>
<td>J. Goyanes
Report of the intra-arterial use of procaine.</td>
</tr>
<tr>
<td>160</td>
<td>Germany</td>
<td>Wilhelm Graef
Ether used in combination with isopral intravenously.</td>
</tr>
<tr>
<td>161</td>
<td>United States</td>
<td>James T. Gwathmey
Introduction of successful narcosis by the rectal route by use of a mixture of ether and oil.</td>
</tr>
<tr>
<td>163</td>
<td>Belgium</td>
<td>Danis
Introduction of transsacral anesthesia by injection of the sacral nerves individually through the posterior sacral foramina.</td>
</tr>
<tr>
<td>164</td>
<td>United States</td>
<td>Karl Connell
Demonstration with the anesthetometer that the tension of ether vapor necessary to produce narcosis in a man is about 50 mm. of mercury.</td>
</tr>
<tr>
<td>165</td>
<td>United States</td>
<td>Walter M. Boothby
Worked on ether percentages.</td>
</tr>
<tr>
<td>166</td>
<td>United States</td>
<td>J. T. Gwathmey
Published his textbook, Anesthesia.</td>
</tr>
<tr>
<td>167</td>
<td>United States</td>
<td>W. M. Boothby
Accurate calibration furnished for the sight-feed valves. Worked on anesthetic tension.</td>
</tr>
<tr>
<td>168</td>
<td>United States</td>
<td>Richard von Foregger
Constructed a gas-oxygen machine without a reducing valve.</td>
</tr>
<tr>
<td>169</td>
<td>Belgium</td>
<td>A. Hustin
Introduced sodium citrate for transfusion of blood.</td>
</tr>
<tr>
<td>170</td>
<td>Argentina</td>
<td>L. Agote
Introduced sodium citrate for transfusion of blood.</td>
</tr>
<tr>
<td>171</td>
<td>United States</td>
<td>Richard Lewisohn
Introduced sodium citrate for transfusion of blood.</td>
</tr>
<tr>
<td>172</td>
<td>United States</td>
<td>Gwathmey apparatus built by von Foregger without a reducing valve, but with control valves for oxygen and nitrous oxide.</td>
</tr>
<tr>
<td>173</td>
<td>United States</td>
<td>Publication of American Yearbook of Anesthesia and Analgesia.</td>
</tr>
<tr>
<td>174</td>
<td>United States</td>
<td>D. E. Jackson
Use of carbon dioxide absorber for general anesthesia.</td>
</tr>
<tr>
<td>175</td>
<td>United States</td>
<td>S. W. Hurwitz
First clinical use of intravenous gum saline.</td>
</tr>
<tr>
<td>176</td>
<td>Switzerland</td>
<td>Elisabeth Bredenfeld
Report on the intravenous use of morphine in connection with scopolamine.</td>
</tr>
</tbody>
</table>
The History of Surgical Anesthesia

177. 1916 United States Peyton Rous and J. R. Turner
Transfusion with refrigerated erythrocytes.

178. 1918 United States Frank C. Mann
Experimental studies on the use of blood substitutes in shock.

179. 1918 United States A. B. Luckhardt and R. C. Thompson
Discovery of the anesthetic qualities of ethylene.

180. 1918 United States Peyton Rous and G. W. Wilson
Transfusion of blood, serum, plasma, solution of acacia.

181. 1920 France Bardet
Experimentation with the anesthetic qualities of somnifene, a derivative of barbituric acid.

182. 1920 England I. W. Magill
Development of endotracheal anesthesia.

183. 1920 United States Gaston Labat
Demonstration of local, regional and spinal anesthesia for most operations.

184. 1920 United States A. E. Guedel
Publication of the Signs of anesthesia.

185. 1920 Spain Fidel Pagés
Development of epidural anesthesia.

186. 1921 Japan Koshiro Nakagawa
The use of ethyl alcohol intravenously.

187. 1922 United States Gaston Labat
Published his Regional anesthesia.

188. 1922 England A. G. Levy
Publication of Chloroform anesthesia.

189. 1922 United States
Current Researches in Anesthesia and Analgesia began publication.

190. 1922 England
First meeting of the Section on Anæsthesia of the British Medical Association.

191. 1923 United States A. B. Luckhardt, J. B. Carter and Isabella Herb
The physiologic effects of ethylene were studied and it was concluded that ethylene was a more effective anesthetic agent than nitrous oxide. First clinical use of ethylene.

192. 1923 England
British Journal of Anesthesia began publication.

193. 1923 Germany C. J. Gauss and H. Wieland
Report of the clinical use of narcylen.

194. 1923 Germany

195. 1923 Canada W. E. Brown
Experimentation with ethylene as general anesthetic agent.
A Chronology of Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Description</th>
</tr>
</thead>
</table>
| 196. 1923 | United States Ralph M. Waters
Development of soda lime in carbon dioxide absorption. |
| 197. 1923 | United States R. von Foregger
Construction of the Seattle model apparatus which consisted of four hanger yokes, one each for nitrous oxide, ethylene, carbon dioxide and oxygen, and an ether bottle. It was a portable model. |
| 198. 1924 | United States J. A. Heidbrink
Construction of the Lundy-Heidbrink model machine which consisted of two hanger yokes for each of the following gases: nitrous oxide, ethylene, carbon dioxide and oxygen, and an ether bottle. It had an automatic shut-off valve which was adjustable and operated by bag pressure. |
| 199. 1924 | Canada Wesley Bourne
Reported on the mechanism of acidosis in anesthesia. |
| 200. 1924 | United States Albert H. Miller
Observation of thoracic (ascending respiratory) paralysis under general anesthesia. |
| 201. 1924 | France Fredet and Perlis
Introduction of the intravenous use of somnifene. |
| 202. 1924 | Germany L. Bogendörfer
Introduction of dial in intravenous anesthesia. |
| 203. 1925 | Switzerland R. Feissly
Report of clinical use of blood plasma. |
| 204. 1926 | Germany O. Butzengeiger
First clinical use of avertin in rectal anesthesia. |
| 205. 1927 | Germany R. Bumm
Introduction of pernoston, which was the first agent to become widely used in intravenous anesthesia. |
| 206. 1927 | United States N. F. Ockerblad and T. G. Dillon
Use of ephedrine in spinal anesthesia. |
| 207. 1927 | Canada
First meeting of the Section on Anaesthesia of the Canadian Medical Association. |
| 208. 1928 | Germany
Narkose und Anästhesie began publication. |
| 209. 1928 | United States Brian C. Sword
Introduction of closed circle (filter) method of anesthesia. |
| 210. 1928 | Canada G. H. W. Lucas and V. E. Henderson
Experimental demonstration of anesthetic qualities of cyclopropane. |
| 211. 1928 | United States Géza de Takáts
Publication of _Local anæsthesia_. |
| 212. 1929 | Germany
Schmerz united with _Narkose und Anästhesie_. |
| 213. 1929 | Mexico M. G. Marin
Establishment of the use of ethyl alcohol as an intravenous anesthetic agent. |
The History of Surgical Anesthesia

<table>
<thead>
<tr>
<th>Year</th>
<th>Country</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1929</td>
<td>United States</td>
<td>L. G. Zerfas and colleagues. Report on the intravenous use of sodium amytal, which was used more frequently in the United States from 1929 to 1933 than any other intravenous anesthetic agent.</td>
</tr>
<tr>
<td>1930</td>
<td>United States</td>
<td>J. T. Gwathmey. Report of the use of anesthesia in 20,000 obstetric cases. This report greatly stimulated the use of anesthetic agents in labor.</td>
</tr>
<tr>
<td>1930</td>
<td>United States</td>
<td>Chauncey D. Leake and M. Y. Chen. The use of divinyl ether as an anesthetic agent was suggested.</td>
</tr>
<tr>
<td>1932</td>
<td>England</td>
<td>C. L. Hewer. First edition of Recent advances in anesthesia and analgesia.</td>
</tr>
<tr>
<td>1932</td>
<td>United States</td>
<td>Lundy-Heidbrink kinetometer was placed on market. It was adapted for absorber use.</td>
</tr>
<tr>
<td>1934</td>
<td>United States</td>
<td>J. S. Lundy. Introduction of the intravenous use of pentothal sodium for anesthesia.</td>
</tr>
<tr>
<td>1934</td>
<td>United States</td>
<td>G. R. Vehrs. Publication of Spinal anesthesia.</td>
</tr>
<tr>
<td>1935</td>
<td>England</td>
<td>Diploma in anaesthetics instituted by the Royal College of Physicians and Surgeons.</td>
</tr>
<tr>
<td>1935</td>
<td>Italy</td>
<td>Giornale Italiano di Anestesia e di Analgesia began publication.</td>
</tr>
</tbody>
</table>
A Chronology of Events

232. 1935 France
Inauguration of new journal, *Anesthésie et Analgésie*.

233. 1935 Canada W. Bourne
Awarded Hickman medal (1st award).

234. 1935 Russia Filatov and Kartaševskij
Report of successful transfusion of plasma to seventy-two human beings.

235. 1936 United States A. L. Barach
Report on the therapeutic use of helium.

236. 1937 United States
Formation of the American Board of Anesthesiology, Inc.

237. 1937 United States A. E. Guedel
Publication of *Inhalation anesthesia*.

238. 1937 United States Publication began of *Anesthesia Abstracts*.

239. 1937 United States A. E. Hertzler
Publication of *The technic of local anesthesia*, Ed. 6. Ed. 1 published in 1912.

240. 1938 England I. W. Magill
Awarded Hickman medal (2nd award).

241. 1938 United States L. H. Maxson
Publication of *Spinal anesthesia*.

242. 1938 United States Henry K. Beecher
Publication of *Physiology of anesthesia*.

243. 1939 United States P. D. Woodbridge, J. W. Horton and Karl Connell
Report on intercoupler.

244. 1939 United States F. W. Clement
Publication of *Nitrous oxide-oxygen anesthesia*.

245. 1939 Argentina
Publication of *Revista Argentina de Anestesia y Analgesia*.

246. 1940 United States W. T. Lemmon
Introduction of the continuous method of spinal anesthesia.

247. 1940 United States Publication of *Anesthesiology* (v. 1, no. 1, July, 1940).

248. 1940 United States Constance Black, G. E. Shannon and J. C. Krantz
Reported surgical anesthesia with cyclopropane ether.

249. 1940 United States B. H. Robbins
Publication of *Cyclopropane anesthesia*.

250. 1940 United States G. W. Jones, R. E. Kennedy and G. J. Thomas
Suggested prevention of explosions of anesthetic agents by dilution of inert gases.
The History of Surgical Anesthesia

251. 1941 United States
Section of Anesthesiology of the American Medical Association held first meeting.

252. 1941 United States A. E. Guedel
Awarded Hickman medal (3rd award).

253. 1941 United States N. A. Gillespie
Publication of Endotracheal anesthesia.

254. 1942 United States F. M. Allen and others
Reported on refrigeration anesthesia for amputations.

255. 1942 United States W. B. Edwards and R. A. Hingson
Reported on continuous caudal anesthesia in obstetrics.

256. 1942 United States J. S. Lundy
Publication of Clinical anesthesia.

257. 1942 United States American Medical Association
Publication of Fundamentals of anesthesia.

258. 1943 England N. R. James
Publication of Regional analgesia for intra-abdominal surgery.

259. 1944 United States R. M. Waters
Awarded Hickman medal (4th award).

260. 1944 United States R. C. Adams
Publication of Intravenous anesthesia.

261. 1944 United States P. J. Flagg

A Chronology of Events Relating to Anesthesiology and Allied Subjects (Continued)

262. 1944 United States
Publication of National Research Council’s Fundamentals of anesthesia, Ed. 2.

263. 1944 England R. J. Minnitt and John Gillies
Publication of Textbook of anaesthetics, Ed. 6.

264. 1944 United States C. B. Lull and R. A. Hingson
Publication of The control of pain in childbirth.

265. 1944 United States E. B. Tuohy
Report on the use of a ureteral catheter in lieu of a malleable needle for improving continuous spinal anesthesia.

266. 1944 England C. L. Hewer
Publication of Recent advances in anesthesia and analgesia, Ed. 5.

267. 1944 United States M. L. Binder and A. Klein
Use of salvaged red cells advocated for transfusion in certain conditions of anemia.
The History of Surgical Anesthesia

268. 1944 Belgium Lucien Dautreband, E. Philippot and M.-J. Dallemagne

268A. 1944 Sweden Andus Gronwall and Björn Ingelman
Use of Dextran as a plasma expander reported.

269. 1945 United States P. M. Wood
First recipient of the Distinguished Service Award, American Society of Anesthesiologists.

270. 1945 United States F. W. Clement
Publication of second edition of Nitrous oxide-oxygen anesthesia.

271. 1945 United States E. B. Tuohy
Further developments in the technics of continuous spinal anesthesia suggested.

272. 1946 Australia Geoffrey Kaye
Publication of Anesthetic methods in collaboration with R. H. Orton and D. G. Renton.

273. 1946 Ireland
Section of Anaesthetics of the Royal Academy of Medicine in Ireland inaugurated (December 12).

274. 1946 United States Centennial celebration of Morton’s first public demonstration of the successful use of sulfuric ether as an anesthetic. The celebration was held in Boston, Massachusetts, on October 17, under the joint sponsorship of the New England Society of Anesthesiologists and the American Society of Anesthesiologists, Inc.

275. 1946 United States S. C. Cullen
Publication of Anesthesia in general practice.

276. 1946 United States John Adriani
Publication of The chemistry of anesthesia.

277. 1946 Great Britain and Ireland
Publication begun of Anesthesia (official journal of the Association of Anesthetists of Great Britain and Ireland).

278. 1946 United States George P. Pitkin (1885-1943)

279. 1946 United States R. M. Waters
Named second recipient of the Distinguished Service Award, American Society of Anesthesiologists.

280. 1946 Great Britain R. R. MacIntosh and W. W. Mushin
Publication of Physics for the anesthetist.

281. 1947 United States R. A. Hingson and J. G. Hughes
“Jet injection” or hypospray suggested for the administration of drugs.

282. 1947 United States A. F. Erdmann
Third recipient, Distinguished Service Award, American Society of Anesthesiologists.
A Chronology of Events

283. 1947 Great Britain J. A. Lee
Publication of *A synopsis of anesthesia*.

284. 1947 United States John Adriani
Publication of *Techniques and procedures of anesthesia*.

285. 1947 Great Britain J. U. Human
Publication of *Blind intubation and the signs of anesthesia*, Ed. 3.

286. 1947 United States
The oximeter, an electronic device for measuring the oxygen content of various mixtures of gases, made available.

287. 1947 United States H. M. Seldin
Publication of *Practical anesthesia for dental and oral surgery*, Ed. 3.

288. 1947 United States M. Saklad and associates
Perfected the technic of fractional segmental spinal anesthesia.

289. 1948 United States J. S. Lundy and associates
Use of roentgenograms for accurately locating points of needles improved the technic of diagnostic and therapeutic blocks.

290. 1948 United States Harry Cherry and I. M. Pallin
Music successfully used as an adjunct to anesthesia in more than 1,000 cases.

291. 1948 United States J. S. Lundy
Named recipient of the fourth Distinguished Service Award, American Society of Anesthesiologists.

292. 1948 United States N. A. Gillespie
Publication of *Endotracheal anesthesia*, Ed. 2.

293. 1948 United States M. D. Leigh and M. Kathleen Belton
Publication of *Pediatric anesthesia*.

294. 1948 Great Britain R. J. Minnitt and John Gillies
Publication of *Textbook of anaesthetics*, Ed. 7.

295. 1948 Canada W. N. Kemp
Publication of *Elementary anesthesia*.

296. 1948 United States
First radioactive pentothal used experimentally. (Synthesized by Donalee L. Tabern; presented to John S. Lundy and used by Jesse L. Bollman.)

297. 1948 Great Britain C. E. Corlette
Publication of *A surgeon's guide to local anesthesia: A manual of shockless surgery*.

298. 1948 Great Britain H. W. C. Griffiths and John Gillies
Production of vasodilation and hypotension by a combination of total sympathetic block or high spinal anesthesia with paralysis of the thoracic sympathetic outflow.

299. 1948 United States D. E. Hale
Report on controlled hypotension during brain and fenestration operations by arterial bleeding.

[118b]
The History of Surgical Anesthesia

300. 1948 Great Britain W. D. M. Paton and E. J. Zaimis
Production of vasodilation and hypotension by the use of pentamethonium iodide during surgical anesthesia.

301. 1949 United States
Symposium on pain presented at the annual meeting of the American Society of Anesthesiologists (December).

301A. 1949 United States
Refresher courses of American Society of Anesthesiologists.

302. 1949 India
Organization of the Indian Society of Anesthetists.

303. 1949 United States C. L. Burstein
Use of the instantaneous recording electrocardiograph to detect and diagnose cardiac irregularities during anesthesia that were not clinically discernible.

304. 1949 Great Britain F. T. Evans, editor
Publication of Modern practice in anesthesia.

305. 1949 United States F. F. Snyder
Publication of Obstetric analgesia and anesthesia, their effects upon labor and the child.

306. 1949 United States Albert Faulconer, Jr., J. W. Pender and R. G. Bickford
Use of the EEG in demonstrating the anesthetic potency of nitrous oxide at high partial pressures in the absence of anoxia.

Reported on photoelectric cell method of determining arterial oxygen saturation in man.

308. 1949 United States John Adriani
Recipient of the 1949 Distinguished Service Award, American Society of Anesthesiologists.

309. 1950 United States A. E. Guedel
Recipient of the 1950 Distinguished Service Award, American Society of Anesthesiologists.

Classification of the electroencephalographic patterns produced by nitrous-oxide-ether anesthesia during surgical operations.

311. 1950 United States
Refresher courses in postgraduate anesthesiology inaugurated at the annual meeting of the American Society of Anesthesiologists.

312. 1950 Great Britain J. A. Lee
Publication of A synopsis of anesthesia, Ed. 2.

313. 1951 United States S. V. Mead
Publication of Anesthesia in dental surgery, Ed. 2. Ed. 1 published in 1935.
A Chronology of Events

314. 1951 United States F. W. Clement
Publication of *Nitrous oxide-oxygen anesthesia*, Ed. 3.

315. 1951 Brazil
Publication of *Revista Brasileira de Anestesiologia* (Official organ of the Sociedade Brasileira de Anestesiologia).

316. 1951 United States A. E. Guedel
Publication of *Inhalation anesthesia; a fundamental guide*, Ed. 2.

317. 1951 United States S. C. Cullen
Publication of *Anesthesia in general practice*, Ed. 3.

318. 1951 Great Britain T. A. B. Harris
Publication of *The mode of action of anesthetics*.

319. 1951 United States Ralph M. Tovell
Recipient of the 1951 Distinguished Service Award, American Society of Anesthesiologists.

320. 1952 Mexico
Publication begins of *Revista Mexicana de Anestesiologia* (official organ of the Sociedad Mexicana de Anestesiologia).

321. 1952 United States John Adriani
Publication of *The pharmacology of anesthetic drugs*, Ed. 3.

322. 1952 Western Germany
Der Anraesthesist (organ of the Austrian Society of Anesthesiology) begins publication (vol. 1, no. 1, April, 1952).

323. 1952 Switzerland
Swiss Society of Anesthesiologists founded in Zurich (July 5).

324. 1952 Great Britain R. R. MacIntosh and F. B. Bannister
Publication of *Essentials of general anesthesia*, Ed. 5.

325. 1952 United States Henry S. Ruth
Recipient of the 1952 Distinguished Service Award of the American Society of Anesthesiologists.

326. 1952 United States Albert Faulconer, Jr.
Method for the study of the influence of one drug upon the pharmacologic effect of another drug quantitatively and objectively.

327. 1952 United States V. J. Collins
Publication of *Principles and practice of Anesthesiology*.

328. 1953 Great Britain John Gillies (of Edinburgh)
Recipient of the Hickman Gold Medal.

Report on the intravenous use of a thiophanium derivative for the production of flexible and rapidly reversible hypotension swung surgery.

330. 1953 United States F. M. Offenkrantz, Solomon Margolin and Dorothy Jackson
Preliminary report proposing the routine addition of chlor-trimeton directly to whole blood transfusions to prevent nonhemolytic transfusion reactions.
Sources for a Chronology of Events
RELATING TO
Anesthesiology and Allied Subjects

6. HERODOTUS. Book 4, chapter 75.

10. HUME, op. cit., p. 621.

12. Id.

13. KAHLE, PAUL: Anesthesia in the Arabic medicine. MS. p. 2. Courtesy Dr. J. S. Lundy.

23. Id.

24. GARRISON, op. cit., p. 824.

25. [OLDENBURG, HENRY]: Of a way to convey liquors immediately into the mass of blood. Phil. Tr. Roy. Soc. 1:128-130 (Dec. 4) 1665. See also: [CLARCK, TIMOTHY]: A letter . . . concerning some anatomical inventions . . . Phil. Tr. Roy. Soc. 3:672-682 (May 18) 1668.

31. GARRISON, op. cit., p. 328.

32. Id.

35. MOORE, JAMES: Method of preventing or diminishing pain in several operations of surgery. London, T. Cadell, 1784. 50 pp.

The History of Surgical Anesthesia

37. Beddoes, Thomas, and Watts, James: Considerations on the medicinal use and on the production of factitious airs. Bristol, 1795.
44. Fülöp-Miller, op. cit., pp. 35-36.
46. Kleeman, op. cit., p. 117.
52. Clark, op. cit., p. 1031.
62. Same as 61.
63. Clark, op. cit., p. 1033.
64. Id.
65. Ibid., p. 1031.
68. Simpson, J. Y.: On a new anaesthetic agent, more efficient than sulphuric ether. London M. Gaz. n.s. 5:934-937, 1847.
70A. Flagg, J. F. B.: Ether and chloroform; their employment in surgery, dentistry, midwifery, therapeutics . . . Philadelphia, Lindsay and Blakiston, 1851. 189 pp.
72. Archer, Typewritten MS.
Sources for a Chronology of Events

76. RICE, op. cit., p. 85.

77. SNOW, On chloroform and other anesthetics, 443 PP.

78. BUMPUS, op. cit., p. 83.

79. GWATHMEY, op. cit., p. 23.

80. MILLER, ALBERT: Personal communication to the author.

81. ARCHER, Typewritten MS., p. 28.

83. MILLER, ALBERT: Life of S. S. White. MS.

86. MILLER, ALBERT: Personal communication to the author.

87. ARCHER, Typewritten MS., p. 23.

88. BRITISH M. J. 2:110 (July 4) 1868.

91. MILLER, ALBERT: Life of S. S. White. MS.

95. MILLER, ALBERT: Personal communication to the author.

96. ARCHER, Typewritten MS., p. 28.

98. ARCHER, Typewritten MS., p. 29.

101. MOLLÈRE, DANIEL: Note sur l'éthérisation par la voie rectale. Lyon méd. 45:419-423 (Mar. 30) 1884.

114. Id.

115. GARRISON, op. cit., p. 862.

116. KLEIMAN, op. cit., p. 133.
The History of Surgical Anesthesia

121. Bumpus, op. cit., p. 84.

124. Miller, Albert: Personal communication to the author.

132. Archer, Typewritten MS.

135. Bumpus, op. cit., p. 84.

139. Bumpus, op. cit., p. 84.

146. Adams, Intravenous anesthesia . . . , p. 11.

152. Archer, Typewritten MS., p. 36.

154. Archer, Typewritten MS., p. 36.

156. Ohio Chemical Co.: Letter from E. H. Cook.
Sources for a Chronology of Events

157. GWATHMEY, J. T.: Personal communication to the author.
158. GWATHMEY, J. T.: Personal communication to the author.
159. ADAMS, Intravenous anesthesia . . . , p. 12.
163. BUMPUS, op. cit., p. 87.
165. Id.
168. GWATHMEY, J. T.: Personal communication to the author.
172. GWATHMEY, J. T.: Personal communication to the author.
181. KLEIN, op. cit., p. 137.
183. LUNDY, J. S.: Personal communication to the author.
194. LUNDY, J. S.: Personal communication to the author.
195. HEIDBRINK, J. A.: Personal communication to the author.
The History of Surgical Anesthesia

201. ADAMS, Intravenous anesthesia ..., p. 13.

205. ADAMS, Intravenous anesthesia ..., p. 13.

210. ADAMS, Intravenous anesthesia ..., p. 11.

217. HEIDBRINK, J. A.: Personal communication to the author.

The History of Surgical Anesthesia

Sources for a Chronology of Events Relating to Anesthesiology and Allied Subjects (Continued)

306. Faulconer, Albert, Jr.; Pender, J. W., and Bickford, R. G.: The influence of partial pressure of nitrous oxide on the depth of anesthesia and the electro-
The History of Surgical Anesthesia

III

Selected References for
A History of Surgical Anesthesia

ARRANGED BY SUBJECT

BIBLIOGRAPHY

CHRONOLOGY

GENERAL REFERENCES

ANÆSTHETIC AGENTS. Tr. A. M. A. 1:176-224, 1848.

Selected References Arranged by Subject

KEYS, T. E.: The development of anesthesia. Anesthesiology. 2:552-574 (Sept.) 1941; 3:11-23 (Jan.); 282-294 (May); 650-659 (Nov.) 1942 and 4:409-429 (July) 1943.

The History of Surgical Anesthesia

Ether

———: A manual of etherization: containing directions for the employment of ether, chloroform, and other anaesthetics by inhalation ... Boston, J. B. Mansfield, 1861. 154 pp.

Portrait of Valerius Cordus and three other plates.

—–: The first use of ether as an anesthetic. At the Battle of the Wilderness in the Civil War. J. A. M. A. 42:1068-1073 (April 23) 1904. Written by Morton but not published until 1904.

—–: Statements, supported by evidence, of W. T. G. Morton, M.D., on his claim to the discovery of anaesthetic properties of ether ... Washington, 1853. 582 pp. Submitted to the U. S. Senate by Mr. Davis of Massachusetts.

SNOW, JOHN: On the inhalation of the vapour of ether in surgical operations: containing a description of the various stages of etherization, and a statement of the result of nearly eighty operations in which ether has been employed in St. George’s and University College hospitals. London, J. Churchill, 1847. 88 pp.

STEHLE, R. L., and BOURNE, WESLEY: The anesthetic properties of pure ether. J. A. M. A. 79:375-376 (July 29) 1922. Conclusion: Pure ether possesses to the highest degree the anesthetic properties usually ascribed to it.
The History of Surgical Anesthesia

WARREN, EDWARD: Some account of the Letheon; or who was the discoverer. Ed. 2. Boston, Dutton and Wentworth, 1847. 79 pp. This edition was the first to contain Holmes's famous communication suggesting the terms "anaesthesia" and "anaesthetic."

CHLOROFORM

ANAESTHETICS—Third interim report of the committee, consisting of Dr. A. D. Waller (chairman), Sir Frederic Hewitt (secretary), Dr. Blumfield, Mr. J. A. Gardner, and Dr. G. A. Buckmaster, appointed to acquire further knowledge, clinical and experimental, concerning anaesthetics—especially chloroform, ether, and alcohol—with special reference to deaths by or during anaesthesia and their possible diminution. Report of the British Association for the Advancement of Science. 80:154-171, 1911. (Published in 1912 by John Murray, London.)

---: Report of the second Hyderabad chloroform commission. Lancet. 1:149-159 (Jan. 18); 486-510 (Mar. 1); 1369-1393 (June 21) 1890.

---: On a new anaesthetic agent, more efficient than sulphuric ether. London M. Gaz. n.s. 5:934-937, 1847. Also Lancet, 2:549-550 (Nov. 20) 1847.

SNOW, JOHN: On chloroform and other anaesthetics; their action and administration. Edited, with a memoir of the author, by Benjamin W. Richardson. London, John Churchill, 1858. 443 pp. John Snow was the first professional anesthetist.

NITROUS OXIDE

The History of Surgical Anesthesia

DAVY, HUMPHRY: Researches, chemical and philosophical; chiefly concerning nitrous oxide, or dephlogisticated nitrous air and its respiration. London, J. Johnson, 1800. 580 pp. Davy discovered the anesthetic qualities of nitrous oxide and suggested its use during surgical operations.

HEIDBRINK, J. A.: The principles and practice of administering nitrous oxide —oxygen and ethylene oxygen. Dental Digest. 31:73-76 (Feb.); 156-158 (Mar.); 226-228 (Apr.); 296-299 (May); 382-384 (June); 457-459 (July); 545-547 (Aug.); 607-612 (Sept.); 674-677 (Oct.); 758-761 (Nov.) 1925.

SMITH, TRUMAN: An inquiry into the origin of modern anaesthesia ... Hartford, Brown and Gross, 1867. 165 pp. The case for Horace Wells.

CARBON DIOXIDE

HICKMAN, H. H.: A letter on suspended animation containing experiments showing that it may be safely employed on animals, with the view of ascertaining its probable utility in surgical operations on the human subject ... Ironbridge, W. Smith, 1824. No copy available for study.

[132]
Selected References Arranged by Subject

CARBON DIOXIDE ABSORPTION

SNOW, JOHN: On narcotism by the inhalation of vapours. London M. Gaz. n.s. 12:622-627 (Apr. 11) 1851. Animal experimentations to ascertain the quantity of carbon dioxide excreted while under the influence of chloroform and ether.

ETHYL ETHER

ETHYLENE

COTTON, J. H.: Anaesthesia from commercial ether-administration and what it is due to. Canad. M. A. J. 7:769-777 (Sept.) 1917. Anesthetic and analgesic qualities of ethylated ether. Some of the findings here were exposed by Stehle and Bourne (1922).

[133]
The History of Surgical Anesthesia

CROCKER, WILLIAM, and KNIGHT, L. I.: Effect of illuminating gas and ethylene on flowering carnations. Botanical Gaz. 46:259-276 (Oct.) 1908. Ethylene was found to put flowers to sleep.

TRICHLORETHYLENE

ETHYL—N—PROPYL ETHER

CYPROME ETHER

Selected References Arranged by Subject

Cyclopropane

Divinyl Oxide

Local Anesthesia

The History of Surgical Anesthesia

LOCAL ANESTHESIA—COCAINE

—-: On the avoidance of shock in major amputations by cocainization of large nerve-trunks preliminary to their division. Army Surg. 36:321-345 (Sept.) 1902.

Halsted, W. S.: Practical comments on the use and abuse of cocaine... New York M. J. 42:294-295 (Sept. 12) 1885. Halsted made the first experiments on infiltration anesthesia; he also produced anesthesia by intradermal injection of water.

LOCAL ANESTHESIA—EPIDURAL

Selected References Arranged by Subject

PAGÉS, FIDEL: Anestesia metamérica. Rev. san. mil., Madrid. 11:351-365 (June); 385-396 (July) 1921.

LOCAL ANESTHESIA—NOVOCAINE

BRAUN, H.: Ueber einige neue örtliche Anaesthetica. (Stovain, Alypin, Novo-
cain.) Deutsche med. Wchnschr. 31:1667-1671 (Oct. 19) 1905. Einhorn
prepares novocain, 1904. Introduced by Braun.

LOCAL ANESTHESIA—STOVAIN

FOURNEAU, E.: Sur quelques aminoalcools à fonction alcoolique tertiaire du
Preparation of stovaine, 1903. See also: Fourneau, E.: Stovaine, anes-

LOCAL ANESTHESIA—TROPACOCINE

GIESEL, F.: Benzollpseudotropein [tropacocaine]. Pharm. Ztg. 36:419 (July
4) 1891. Discovery of tropacocaine.

INTRAVENOUS ANESTHESIA

c1944. xiv, i l., 663 pp. Well documented with references.
——: Intravenous anesthesia: chemical, pharmacologic and clinical con-
sideration of the anesthetic agents including the barbiturates. Thesis,
University of Minnesota, Graduate School, 1940. H. Dresser introduces
methylpropylcarbinol urethane (hedonal), 1899. N. P. Krawkow demon-
strates intravenous use of hedonal, 1905. Bier develops regional intra-
venous anesthesia with novocain, 1909. L. Burkhardt reports on the
intravenous use of chloroform and ether, 1909. J. Goyanes reports on the
intra-arterial use of procaine hydrochloride, 1912. M. G. Marin of Mexico
introduces clinical intravenous use of ethyl alcohol, 1929.

BOURNE, WESLEY; BRUGER, MAURICE, and DREYER, N. B.: The effects of
sodium amytal on liver function; the rate of secretion and composition of
the urine; the reaction, alkali reserve, and concentration of the blood; and
the body temperature. Surg., Gynec. & Obst. 51:356-360 (Sept.)
1930.

BREDENFELD, ELISABETH: Die intravenöse Narkose mit Arzneigemischen.
Ztschr. f. exper. Path. u. Therap. 18:80-90 (Apr. 4) 1916. Morphine in
combination with scopolamine.

Analg. 19:26-30 (Jan.-Feb.) 1940.

[CLEARCK, TIMOTHY]: A letter, written to the publisher by the learned and
experienced Dr. Timothy Clarck, one of his majesties physicians in ordi-
nary, concerning some anatomical inventions and observations, parti-
cularly the origin of the injection into veins, the transfusion of blood, and the
parts of generation. Phil. Tr. Roy. Soc. 3:672-682 (May 18) 1668. Report-
ing Sir Christopher Wren's experiments begun "towards the end of 1656."
The History of Surgical Anesthesia

[Denis, Jean Baptiste]: An extract of a letter written by J. Denis, Doctor of Physick, and Professor of Philosophy and the Mathematicks at Paris, touching a late cure of an inveterate phrensy by the transfusion of blood. Phil. Tr. Roy. Soc. 2:517-524 (Feb. 10) 1667/8 (i.e., 1668).

Denis, J[ean Baptiste, and Emmerez,]—: A letter concerning a new way of curing sundry diseases by transfusion of blood . . . Phil. Tr. Roy. Soc. 2:489-504 (July 22) 1667. Reports first transfusion of animal blood (lamb's) to man, June 15, 1667.

[Lower, Richard]: The method observed in transfusing the blood out of one animal into another. Phil. Tr. Roy. Soc. 1:353-358 (Dec. 17) 1666. Robert Boyle communicated this account of Lower's experiments. (First known transfusion of blood to animals.)

[——, and King, Edmund]: An account of the experiment of transfusion, practised upon a man in London. Phil. Tr. Roy. Soc. 2:557-559 (Dec. 9) 1667.

Lundy, L. H.: Modern trends in anesthesia. Kansas M. Soc. J. 41:279-287 (July) 1940. Intravenous anesthesia recommended as a safety measure in cases in which diathermy or cautery is to be used.

[Oldenburg, Henry]: An account of the rise and attempts, of a way to convey liquors immediately into the mass of blood. Phil. Tr. Roy. Soc. 1:128-130 (Dec. 4) 1665. Sir Christopher Wren's experiments.
Selected References Arranged by Subject

BARBITURATES

BARBITURATES—BARBITAL

BARBITURATES—DIAL

BARBITURATES—EUNARCON

BARBITURATES—EVIPAN

BARBITURATES—NEMBUTAL

The History of Surgical Anesthesia

BARBITURATES—PENTOTHAL SODIUM

BARBITURATES—SODIUM AMYTAL

LUNDY, J. S.: The barbiturates as anesthetics, hypnotics and antispasmodics: their use in more than 1000 surgical and non-surgical clinical cases and in operations on animals. Anesth. & Analg. 8:360-365 (Nov.-Dec.) 1929. Sodium amytal.

BARBITURATES—SODIUM ISO-AMYL

BARBITURATES—SOMNIFENE

SPINAL ANESTHESIA

BOURNE, WESLEY; LEIGH, M. D.; INGLIS, A. N., and HOWELL, G. R.: Spinal

Employment of Etherington-Wilson’s technic.

———: Local and regional anesthesia with cocain and other analgesic drugs, including the subarachnoid method, as applied in general surgical practice. Philadelphia M. J. 6:820-843 (Nov. 3) 1900.

SPINAL ANESTHESIA—CONTINUOUS

The History of Surgical Anesthesia

CONTINUOUS CAUDAL ANESTHESIA

SCOPOLAMINE MORPHINE IN OBSTETRICS

RECTAL ANESTHESIA

——: Oil-ether anesthesia. Lancet. 2:1756-1758 (Dec. 20) 1913. By adding caron oil to ether, Gwathmey overcame irritation of the mucosa.

——: The story of oil-ether colonic anesthesia. Anesthesiology. 3:171-175 (March) 1942.

REFRIGERATION ANESTHESIA

[143]
The History of Surgical Anesthesia

RICHARDSON, B. W.: Reports and lectures on original researches in scientific practical medicine. I. On a new mode of producing local anaesthesia. M. Times & Gaz. 1:115-117 (Feb. 3) 1866. Introduction of ether spray.

ENDOTRACHEAL ANESTHESIA

[Hook, Robert]: An account of an experiment made by M. Hook, of preserving animals alive by blowing through their lungs with bellows. Phil. Tr. Roy. Soc. 2:539-540 (Oct. 21) 1667.

Selected References Arranged by Subject

MACEWEN, WILLIAM: Clinical observations on the introduction of tracheal tubes by the mouth instead of performing tracheotomy or laryngotomy. Brit. M. J. 2:122-124 (July 24); 163-165 (July 31) 1880. First clinical use by introduction of tracheal tubes instead of preliminary tracheotomy.

The History of Surgical Anesthesia

ACIDOSIS IN ANESTHESIA

SAFETY FEATURES

BALANCED ANESTHESIA

ANEASTHETIC TENSION

BOOTHBY, W. M.: The determination of the anaesthetic tension of ether vapor in man, with some theoretical deductions therefrom, as to the mode of action of the common volatile anaesthetics. J. Pharmacol. & Exper. Therap. 5:379-392 (March) 1914.

ANEASTHETICS AND KIDNEY FUNCTION

Selected References Arranged by Subject

ANESTHESIA IN WAR

ANESTHETICS AND LIVER FUNCTION

 BRUGER, M., and DREYER, N. B.: The effects of sodium amytal on liver function; the rate of secretion and composition of the urine; the reaction, alkali reserve, and concentration of the blood; and the body temperature. Surg., Gynec. & Obst. 51:356-360 (Sept.) 1930.

BRUGER, MAURICE; BOURNE, WESLEY, and DREYER, N. B.: The effects of avertin on liver function: the rate of secretion and composition of the urine, the reaction, alkali reserve and concentration of the blood and the body temperature. Am. J. Surg. 9:82-87 (July) 1930.

ANALEPTICS IN ANESTHESIA

ANESTHETICS AND THE NERVOUS SYSTEM

APPARATUS

BEDDOES, THOMAS, and WATTS, JAMES: Considerations on the medicinal use and on the production of factitious airs. Bristol, 1795.

The History of Surgical Anesthesia

—-: Anæsthetics and their administration. London, Charles Griffin and Co., 1893. xx, 357 pp. Contains descriptions and illustrations of the better known apparatus. See also under “General references.”

JUNKER, F. E.: Description of a new apparatus for administering narcotic vapours. Med. Times & Gaz. 2:590 (Nov. 30) 1867.

SIGN AND STAGES OF ANESTHESIA

Selected References Arranged by Subject

CURARE

DITTRICK, HOWARD: From the jungle to the operating room. Anesth. & Analg. 23:132 (May-June) 1944.

RECORDS AND STATISTICS

BROWN, GILBERT: Notes on 300 cases of general anaesthesia combined with narcotics. Lancet. 1:1005-1006 (Apr. 15) 1911.

SAKLAD, MEYER; GILLESPIE, NOEL, and ROVENSTINE, E. A.: Inhalation therapy, a method for the collection and analysis of statistics. Anesthesiology. 5:359-369 (July) 1944.

WANGEMAN, C. P.: An experiment in the recording of surgical and anesthetic data in military service. Anesthesiology 2:179-185 (March) 1941.

MUSIC AS AN AID TO ANESTHESIA

IV

Selected References for
A History of Surgical Anesthesia
ARRANGED BY AUTHOR

ABEL, A. LAWRENCE. See No. 145.

2. ——: Intravenous anesthesia: chemical, pharmacologic and clinical consideration of the anesthetic agents including the barbiturates. Thesis, University of Minnesota, Graduate School, 1940.

ADAMS, R. C. See also Nos. 138B, 183.

4. ANAESTHETIC AGENTS. Tr. A. M. A. 1:176-224, 1848.

5. ANAESTHETICS—Third interim report of the committee, consisting of Dr. A. D. Waller (chairman), Sir Frederic Hewitt (secretary), Dr. Blumfield, Mr. J. A. Gardner, and Dr. G. A. Buckmaster, appointed to acquire further knowledge, clinical and experimental, concerning anaesthetics—especially chloroform, ether, and alcohol—with special reference to deaths by or during anaesthesia and their possible diminution. Report of the British Association for the Advancement of Science. 80:154-171, 1911. (Published in 1912 by John Murray, London.)

AUER, JOHN. See No. 203.

Selected References Arranged by Author

BARBOUR, H. G. See No. 267.

16. BEDDOES, THOMAS, and WATTS, JAMES: Considerations on the medicinal use and on the production of factitious airs. Bristol, 1795.

BELL, I. R. See No. 104.

BETTANY, G. T. See No. 297.

BICKLEY, R. S. See No. 299.

27. BLUNDELL, WALTER: Painless tooth extraction without chloroform; with observations on local anaesthesia by congelation in general surgery. London, Churchill, 1854. 64 pp.

[151]
The History of Surgical Anesthesia

38. —: On the effects of acetaldehyde, ether peroxide, ethyl mercaptan, ethyl sulphide, and several ketones—di-methyl, ethyl-methyl, and di-ethyl—when added to anæsthetic ether. J. Pharmacol. & Exper. Therap. 28:409-432 (Sept.) 1926.
39. —; Bruger, M., and Dreyer, N. B.: The effects of sodium amytal on liver function; the rate of secretion and composition of the urine; the reaction, alkali reserve, and concentration of the blood; and the body temperature. Surg., Gynec. & Obst. 51:356-360 (Sept.) 1930.
Bourne, Wesley. See also Nos. 47, 81, 82, 238, 243, 264, 265, 266, 267.
44A. Brown, Gilbert: Notes on 300 cases of general anæsthesia combined with narcotics. Lancet. 1:1005-1006 (Apr. 15) 1911.
Selected References Arranged by Author

47. BRUGER, MAURICE; BOURNE, WESLEY, and DREYER, N. B.: The effects of avertin on liver function: the rate of secretion and composition of the urine, the reaction, alkali reserve and concentration of the blood and the body temperature. Am. J. Surg. 9:82-87 (July) 1930.

BRUGER, MAURICE. See also No. 39.

CAGLIERI, GUIDO. See No. 274.

CARR, C. J. See No. 155.

CARTER, J. B. See No. 175.

CHEN, M. Y. See No. 163.

52. [CLARCK, TIMOTHY]: A letter, written to the publisher by the learned and experienced Dr. Timothy Clarck, one of his majesties physicians in ordinary, concerning some anatomical inventions and observations, particularly the origin of the injection into veins, the transfusion of blood, and the parts of generation. Phil. Tr. Roy. Soc. 3:672-682 (May 18) 1668.

The History of Surgical Anesthesia

CLOWES, G. H. A. See No. 303.

CONNELL, KARL. See also No. 300.

CROSSMAN, L. W. See No. 3.

74. ———: On the avoidance of shock in major amputations by cocainization of large nerve-trunks preliminary to their division. Army Surg. 36:321-345 (Sept.) 1902.

76. [DENIS, JEAN BAPTISTE]: An extract of a letter written by J. Denis, Doctor of Physick, and Professor of Philosophy and the Mathematicks at Paris, touching a late cure of an inveterate phrensy by the transfusion of blood. Phil. Tr. Roy. Soc. 2:617-624 (Feb. 10) 1667/8 (i.e. 1668).

77. DENIS, JEAN BAPTISTE, and EMMEREZ, ———: A letter concerning a new way of curing sundry diseases by transfusion of blood . . . Phil. Tr. Roy. Soc. 2:489-504 (July 22) 1667.

78. DITTRICK, HOWARD: From the jungle to the operating room. Anesth. & Analg. 23:132 (May-June) 1944.

80. DREYER, N. B. See Nos. 39, 47.

DUFour. See No. 14.

80B. DUPUY, MARC: Note sur les effets de l'injection de l'éther dans le rectum. L'Union Médicale 1:34 (Mar. 23) 1847.

[155]
The History of Surgical Anesthesia

89. Evans, W. E., Jr. See No. 155.

102. Gatch, W. D.: Nitrous oxid-oxygen anesthesia by the method of re-
breathing: with especial reference to the prevention of surgical shock.
J. A. M. A. 54:775-780 (Mar. 5) 1910.

103. GATEWOOD, E. L.: The psychology of music in relation to anesthesia.

104. GELFAN, SAMUEL, and BELL, I. R.: The anesthetic action of divinyl

37:497-499 (May 9) 1941.

106. GIESEL, F.: Benzollpseudotropein [tropacocaine]. Pharm. Ztg. 36:419
(July 4) 1891.

GILLESPIE, N. A. See also Nos. 249, 288.

109. GOLDBLATT, SAMUEL. See No. 270.

110. GORDON, H. L.: Sir James Young Simpson and chloroform. London,
T. Fisher Unwin, 1897. 233 pp.

111. GRIFFITH, H. R., and JOHNSON, G. E.: The use of curare in general
anesthesia. Anesthesiology. 3:418-420 (July) 1942.

112. —-: Nitrous oxide air anesthesia self administered in obstetrics; a

113. —-: Third stage ether anesthesia: a sub-classification regarding the
significance of the position and movements of the eyeball. Nat. Anesth.

Analg. 7:238-239 (July-Aug.) 1928.

GUEDEL, A. E. See also Nos. 165, 289.

115. GUTHRIE, SAMUEL: New mode of preparing a spirituous solution of
chloric ether. Silliman J. 21:64-65; On pure chloric ether, 22:105-106,
1832.

1914. xxxii, 945 pp.

118. —-: Obstetrical analgesia; a further study, based on more than twenty

120. —-: The story of oil-ether colonic anesthesia. Anesthesiology. 3:171-
175 (March) 1942.

121. —- , and WOOLSEY, W. C.: The Gwathmey-Woolsey nitrous oxide-

122. HAGGARD, H. W.: The absorption, distribution, and elimination of
The History of Surgical Anesthesia

Hallion. See No. 280.

127. ——: The principles and practice of administering nitrous oxide-oxygen and ethylene oxygen. Dental Digest. 31:73-76 (Feb.); 156-158 (Mar.); 226-228 (Apr.); 296-299 (May); 382-384 (June); 457-459 (July); 545-547 (Aug.); 607-612 (Sept.); 674-677 (Oct.); 758-761 (Nov.) 1925.

Henderson, V. E. See also No. 173.

Hertzman, A. B. See No. 164.

136. Hickman, H. H.: A letter on suspended animation containing experiments showing that it may be safely employed on animals, with the view of ascertaining its probable utility in surgical operations on the human subject. Ironbridge, W. Smith, 1824.

Hingston, R. A. See No. 84, 176A.

137. [Hook, Robert]: An account of an experiment made by M. Hook, of preserving animals alive by blowing through their lungs with bellows. Phil. Tr. Roy. Soc. 2:539-540 (Oct. 21) 1667.

Horton, J. W. See No. 300.

Howell, G. R. See No. 40.
Selected References Arranged by Author

HURLEY, VINCENT. See No. 3.

140. ——: Report of the second Hyderabad chloroform commission. Lancet. 1:149-159 (Jan. 18); 486-510 (Mar. 1); 1369-1393 (June 21) 1890.

INGLIS, A. N. See No. 40.

JACKSON, D. E. See also No. 270.

JOHNSON, G. E. See No. 110.

147. JUNKER, F. E.: Description of a new apparatus for administering narcotic vapours. Med. Times & Gaz. 2:590 (Nov. 30) 1867.

KENNEDY, R. E. See No. 146.

150. ——: The development of anesthesia. Anesthesiology. 2:552-574 (Sept.) 1941; 3:11-23 (Jan.); 282-294 (May); 650-659 (Nov.) 1942 and 4:409-429 (July) 1943.

KING, EDMUND. See No. 172.

151. KIRSCHNER, M.: Musik und Operation. Chirurg. 8:429-431 (June 1) 1936.
The History of Surgical Anesthesia

152. —: Eine psycheschonende und steuerbare Form der Allgemeinbetäubung. Chirurg. 1:673-682 (June 15) 1929.

KNIGHT, L. I. See No. 69.

KNOEFEL, P. K. See No. 165.

KRANTZ, J. C., JR. See also No. 26.

LAHEY, F. H. See No. 72.

LALLEMAND, LUDGER. See No. 232.

162. ——: Valerius Cordus and the discovery of ether. Isis. 7:14-24, 1925.

178. ——: The barbiturates as anesthetics, hypnotics and antispasmodics: their use in more than 1000 surgical and non-surgical clinical cases and in operations on animals. Anesth. & Analg. 8:360-365 (Nov.-Dec.) 1929.

[161]
The History of Surgical Anesthesia

LUNDY, J. S. See also No. 231.

186. MACEWEN, WILLIAM: Clinical observations on the introduction of tracheal tubes by the mouth instead of performing tracheotomy or laryngotomy. Brit. M. J. 2:122-124 (July 24); 163-165 (July 31) 1880.

MAGILL, I. W. See also No. 246.

MAJOR, R. T. See No. 247.

195. MATAS, RUDOLPH: Intralaryngeal insufflation for the relief of acute surgical pneumothorax. Its history and methods with a description of the
Selected References Arranged by Author

latest devices for this purpose. J. A. M. A. 34:1468-1473 (June 9) 1900.

196. ——: Local and regional anesthesia; a retrospect and prospect. Am. J.

197. ——: Local and regional anesthesia with cocain and other analgesic
drugs, including the subarachnoid method, as applied in general surgical

(Dec. 30) 1899.

201. MAYDL, K.: Ueber die Intubation des Larynx als Mittel gegen das
Einfliessen von Blut in die Respirationsorgane bei Operationen. Wien.
med. Wchnschr. 43:57-59 (Jan. 7) ; 102-106 (Jan. 14) 1893.

202. MEDICAL INTELLIGENCE: Insensibility during surgical operations pro-

MEEK, W. J. See No. 252.

203. MELTZER, S. J., and Auer, John: Continuous respiration without res-

MELTZER, S. J. See also No. 230.

MERING, J. See No. 91.

204. MILLER, A. H.: Ascending respiratory paralysis under general anes-

205. ——: The origin of the word “anæsthesia.” Boston M. & S. J. 197:1218-
1222 (Dec. 29) 1927.

206. ——: Technical development of gas anesthesia. Anesthesiology. 2:398-
409 (July) 1941.

207. MOCK, H. E., and MOCK, H. E., Jr.: Refrigeration anesthesia in ampu-
tations. J. A. M. A. 123:13-17 (Sept. 4) 1943.

MOCK, H. E., Jr. See No. 207.

208. MOLLIÈRE, DANIEL: Note sur l’étherisation par la voie rectale. Lyon
méd. 45:419-423 (Mar. 30) 1884.

209. MOORE, JAMES: A method of preventing or diminishing pain in several

210. MORTON, W. J.: The invention of anaesthetic inhalation; or, “Discovery

211. [Morton, W. T. G.]: Circular. Morton’s Letheon. Boston, Dutton and

211A. ——: The first use of ether as an anesthetic. At the Battle of the

212. [——]: Letter from Dr. Wm. T. G. Morton. Am. J. Dent. Sc. 8:56-77
(Oct.) 1847.

212A. ——: On the physiological effects of sulphuric ether, and its superi-
The History of Surgical Anesthesia

214. — Statements, supported by evidence, of W. T. G. Morton, M.D., on his claim to the discovery of anaesthetic properties of ether... Washington, 1853. 582 pp.

MOUSEL, L. H. See also No. 183.

NEFF, W. B. See No. 269.

223. [OLDENBURG, HENRY]: An account of the rise and attempts, of a way to convey liquors immediatly into the mass of blood. Phil. Tr. Roy. Soc. 1:128-130 (Dec. 4) 1665.

ORTH, O. S. See No. 288.

Selected References Arranged by Author

RAGINSKY, B. B. See also Nos. 41, 81, 82.

241. RICHARDSON, B. W.: Reports and lectures on original researches in scientific practical medicine. I. On a new mode of producing local anesthesia. M. Times and Gaz. 1:115-117 (Feb. 3) 1866.

ROVENSTINE, E. A. See also Nos. 71, 249, 252, 269, 289.

[165]
The History of Surgical Anesthesia

257. ———: On a new anaesthetic agent, more efficient than sulphuric ether. London M. Gaz. n.s. 5:934-937, 1847. Also Lancet, 2:549-550 (Nov. 20) 1847.

[166]
261. ——: On the inhalation of the vapour of ether in surgical operations: containing a description of the various stages of etherization, and a statement of the result of nearly eighty operations in which ether has been employed in St. George's and University College hospitals. London, J. Churchill, 1847. 88 pp.
SOUTTAR, H. S. See No. 218.
265. ——, and BOURNE, WESLEY: Concerning the mechanism of acidosis in anaesthesia. J. Biol. Chem. 60:17-29 (May) 1924.
STEHLE, R. L. See also No. 42.
STILES, J. A. See also No. 252.
SWANSON, E. E. See No. 303.
The History of Surgical Anesthesia

276. Tatum, A. J. See No. 92.

277. Thomas, G. J. See No. 146.

281. Tuohy, E. B. See No. 183.

283. Warden, C. E. See No. 3.

284. Warm, I. S. See No. 270.

283. Warren, Edward: Some account of the Letheon; or who was the discoverer. Ed. 2. Boston, Dutton and Wentworth, 1847. 79 pp.

[168]
Selected References Arranged by Author

WATERS, R. M. See also Nos. 92, 99, 114, 166, 269.

WATTS, JAMES. See No. 16.

WOOLLSEY, W. C. See No. 121.

"Respice, aspice, prospice," said the ancients. The earlier chapters of this monograph have complied with the first two parts of this exhortation. Any attempt to apply the third is tempered with the reflection that the events of the last five years have shown the folly of pretending to the gift of prophecy. Nevertheless an attempt to forecast the outcome of the events of the past which have been related is too alluring to be omitted. Surgical anaesthesia has now been known to us for a century, and more advances have been made in the last thirty years than in the first seventy. From the general trend of these advances it should be possible to deduce what the future holds in store for the subject.

The outstanding advance in anaesthesia in this century is something more fundamental than the introduction of new drugs or of methods for their administration. It is that an increasing number of medical men are learning to apply their knowledge of physiology, pharmacology, pathology, and clinical diagnosis to the art of anaesthesia. It was this characteristic that gave John Snow his position as the pioneer among clinical anesthetists. Since his day far too many persons who lacked the knowledge, ability, or enterprise to do this have been associated with the specialty. The result has been that the position of anæsthetist came to be regarded as a menial one, and the contribution that he had to make to the well-being of the patient as a purely mechanical one. Indeed this view has been so widely held that in many cases administrations of anæsthesia have been confided to persons without a medical training and therefore with a minimal knowledge of how the human body works, or of the processes of disease and the modifications of function which they produce.
The History of Surgical Anesthesia

In recent years the specialty of anaesthesia has been taken up by men of sound medical training prepared to devote their lives to the study of the alterations of function induced in the human body by the effects of disease, of drugs which produce unconsciousness, and of surgical manipulation. They found that the condition of the anaesthetized human being could be observed as carefully as that of an experimental animal and that accurate records could be kept of his behaviour at the time. They also learned the importance of written records of his physical condition before operation and of the complications which occurred after operation. They evolved mechanical systems so that these facts could be correlated reasonably rapidly and be compared statistically.

Surgeons soon found that their work was facilitated and their responsibility was lessened when they secured the assistance of a medical anaesthetist who "thought in physiological terms." Anaesthesia itself was of higher quality so that they were provided with better conditions under which to operate. They felt free to concentrate their attention entirely on the site of operation because they knew that a diagnostician of skill was devoting his attention to the general condition of the patient. He, they knew from experience, was competent to recognize and treat effectively any emergency which might arise. Indeed, on occasion, his observations of the effects produced by some action of the surgeon's could be of assistance to the latter.

In the last ten years the professional anaesthetist has shown that his services as a consultant can be of value in places other than the operating room. Since he is intimately concerned with both normal and abnormal respiration, and is skilled in the treatment of respiratory obstruction or depression, his opinion or help is of value in the recognition and management of respiratory complications after operation. It is also his daily practice to administer gases by inhalation, and therefore he is the person best qualified to apply inhalational therapy. He is adept at producing analgesia by "blocking" nerves in various parts of the body and this procedure is as useful for therapeutic or diagnostic purposes
as for the performance of operations. Daily he observes the great variability of response of individuals to a given dose of an hypnotic or analgesic drug, and he is often in a position to advise the least harmful means of procuring the comfort of a patient. He is accustomed to diagnose and treat emergencies which may arise in either of the two systems which are vital: the respiratory or the circulatory, and such cases are seen in the casualty room and the ward as well as in the operating room.

The efficient discharge of these duties demands the services of a person of sound clinical judgment as well as manual skill. The technician, no matter how experienced, lacks the training in physiology, pharmacology, pathology and clinical diagnosis which is essential to these functions. The administration of anaesthesia by technicians, therefore, will progressively disappear in the future.

The task, however, of training enough professional anæsthetists to make this possible is of considerable magnitude. The American Medical Association enumerates some six thousand four hundred hospitals in the United States, whereas the membership of the American Society of Anæsthetists does not greatly exceed fifteen hundred. Our primary aim must be to provide at least one efficient professional anæsthetist for every hospital in the country. To do this the teaching of the subject must undergo drastic reform. There are still medical schools from which a student can graduate without any instruction in anaesthesia; and in far too many the “teaching” is reminiscent of “the blind leading the blind.” It seems safe to forecast, therefore, that before long every medical school in the country will possess a Department of Anæsthesia staffed exclusively by medical men of sound training and proved skill of judgment.

These Departments will have a sufficient staff to undertake research as well as the effective teaching of students, interns, and residents. The staff should be employed “whole-time.” In the past careful work has often been made impossible because an individual who was a “part-time” teacher was forced to wear himself out by rushing from one hospital to another in an effort
The History of Surgical Anesthesia

to earn a living. Although many still believe that the lure of personal gain is the only motive for which men will put forth their best endeavour I believe that the best work of the future will be produced by departments manned by “full-time” personnel. Few can produce good work when driven by the prospect of want and uncertainty; and the possibility of personal gain is subversive of conscience and scruple. On the other hand the man whose heart is in his work will use the freedom provided by economic security to its best advantage, and will justify the ideal conditions provided by the employment of the whole of his energy. If he is found lacking in this respect he should be discharged. In such a professional department there will probably be a tendency towards specialization of interest: for instance one member of the permanent staff is likely to undertake the leadership of a sub-department of inhalational therapy, another will be responsible for diagnostic and therapeutic procedures, and so forth.

In the past, as a study of the outstanding events clearly shows, far too much importance has been attached to the particular drug or to the method by which it is administered. Even today the literature is full of controversy between the proponents of rival drugs and methods. There is, however, no ideal agent or method: none which is equally well suited to every purpose, for any patient and in any hands. It has been wisely said that no anaesthetic agent is safer than its worst administrator. The few who have cultivated the art of “thinking physiologically” are perfectly aware that the agent and the method by which it is administered are unimportant. What is vital is the clinical judgment with which the anaesthetist selects the ones to be used for a particular operation in a given patient and under specific circumstances. Thus, as the number of skilled professional anaesthetists increases, we shall develop more balance of judgment and we shall realize more clearly that our lack is not of new agents and methods, but of skill in the use of those we already possess.

The individual is more important to the future than the
The Future of Anaesthesia

machinery. Anaesthesia has shown of recent years that it makes greater claims upon a man, and offers more intellectual exercise, than the mere unthinking repetition of a manual process. It has become evident that it offers to men of the highest intellectual and personal qualities a life full of interest, value, and utility. As this fact becomes more widely appreciated so will a supply of men of the highest ability come forward to adopt anaesthesia as a career. It is this contribution of which the subject stands in the greatest need today. No prophetic powers are needed, however, to point out that if such men are to be attracted to the specialty it must be able to offer candidates of ability proper financial remuneration as well as some assistance in the pursuit of their studies. In the past there has been little, if any, endowment destined to promote training in anaesthesia. The munificent foundation by Lord Nuffield of a Chair in the University of Oxford represents a new departure. Already, in several countries, there are signs that other, if lesser, foundations for the same purpose will shortly come into being.

Anaesthesia is a young specialty, and it is still possible for one person to be personally acquainted with the majority of full-time workers in other countries. But few bonds of international friendship and understanding are closer than those formed by professional interests in common, and this is especially true of the medical profession. The human body is subject to similar lesions which respond to the same treatment the world over; and a passionate interest in the succor of the ills of mankind transcends national boundaries. If we are not to “lose the peace” there must be a more brotherly feeling between nations. In the interest of the world of the future a representative International Society of Anaesthetists is greatly to be desired. I will hazard the prophecy that ere long we shall see its foundation.

Hickman died prematurely, ridiculed and disillusioned; Wells, having been laughed to scorn, took his own life: in this century Howard-Jones and Ivor Lewis, who had both made outstanding contributions to anaesthesia, died by their own hands. Thus did medicine reward pioneers in anaesthesia. We hope that
The History of Surgical Anesthesia

this era is past. Isolated tragedies caused by lack of understanding there still will be, but in the main the medical profession is beginning to appreciate the anaesthetist. The future lies in the hands of the generation which strives to build the phœnix of a new world that is to arise from the ashes of this war. We have had enough of mediocrity; we now need the best—those who will not hesitate “to give, and not to count the cost; to fight, and not to heed the wounds; to toil, and not to seek for rest; to labor, and not to seek for any reward.” If but a few members of the younger generation of the highest integrity and competence can but see the opportunity and decide to spend their lives and efforts in the service of anaesthesia, the future is bright indeed.
Appendix

The Morton and Warren Tracts on Ether (Letheon)

BY JOHN F. FULTON

When William Morton decided to take out a patent on his anesthetic he found it essential to print directions concerning his new agent and its use. Sir William Osler drew attention to these printed circulars and expressed the hope that they might one day be collected and studied bibliographically.¹ During the past year we have attempted to do this and we are glad to make such

[Fig. 43a] Verso of the folded leaf of Morton's notice carrying the postmark and the address of Dr. J. Mason Warren, Boston.

[177]
The History of Surgical Anesthesia

information as we have gleaned available for Major Keys’ timely volume. A full bibliographical description of the tracts will follow later in a catalogue of an exhibit on the history of surgical anesthesia displayed at the Yale Medical Library during December 1944.

In the little-known biography of Morton published by Benjamin P. Poore in 1856¹ one finds the following statement:

“...The medium through which Dr. Morton communicated the results of experiments on etherization to the public, was a ‘circular’ which he had printed, at his own expense, almost every week. It was at first, as its name imports, a mere letter of advice;

TO SURGEONS AND PHYSICIANS.

The subscriber is prepared to furnish a person fully competent to administer his compound to patients who are to have surgical operations performed, and when it is desired by the Operator that the patient should be rendered insensible to pain. Personal or written application may be made to

W. T. G. MORTON,

Dentist,

No. 19, Tremont Street, Boston.

[Fig. 43b] Morton’s first printed notice relating to surgical anesthesia; a folded leaf conjugate with Figure 43a.
but, as it became the receptacle of newspaper articles, and cor-
respondence from every portion of the Union, announcing the
success of etherization, it was necessarily enlarged into a large
and closely-printed sheet of four pages. Soon this ‘circular’ be-
came a pamphlet, and of this five different editions were pub-
lished, under Dr. Morton’s immediate supervision, embodying a
digest of all the authentic information, both from Europe and
America, on anesthesia. This was a perfect magazine of argu-
ments against the opponents of etherization, and its preparation
naturally gave Dr. Morton a good deal of care and anxiety, as he
was considered responsible for the contents.

“When the news of the European success of Dr. Morton’s
discovery came back across the Atlantic, he changed the form of
his publication, although he retained its simple title, adding to it
‘A Voice from Europe.’ This last edition of this valuable work,
which was of nearly one hundred closely-printed pages, embodies
much of great interest, and it conquered the prejudices of many
who had previously had such imperfect sources of authentic in-
formation on the discovery, that their minds had remained
warped by prejudice, or they had been unable to form a candid
opinion on the subject.

“This ‘Voice from Europe,’ as the fifth edition of Dr. Mor-
ton’s circular was also called, acted like sunlight upon the skep-
tical among the American medical fraternity, and before its
bright rays of truth, the darkness of prejudice was soon dissolved.”

It is curious that exactly the same passage occurs in the other
contemporary biography of Morton published in 1858 by Nathan
P. Rice. Rice makes no reference to Poore’s biography, but a
comparison of the two texts indicates that Rice lifted the greater
part of his text directly from Poore without a shadow of acknowl-
edgment—and despite Poore’s note on the title-page which con-
tains the statement: “A few copies of this compilation have been
published, for such revisions, additions or alterations as Dr.
Morton’s friends may seem [sic] fit. The re-publication of any
portion or of all of it, should a copy find its way into public
hands, (which is not intended,) is positively forbidden.”
The History of Surgical Anesthesia

The first printed document issued by Morton is a single-page folded sheet addressed "To Surgeons and Physicians" stating that the "Subscriber" is prepared to furnish "a person fully competent to administer his compounds." The copy (see figs. 43a and 43b) preserved in the Library of the Massachusetts Historical Society, addressed to Dr. J. Mason Warren, bears a postmark dated November 20 [1846]. The same day Morton also published a notice in the Boston Evening Transcript. The Boston Medical and Surgical Journal for December 2nd also carried a notice in its advertising sheet headed "General Circular—Public Caution." It is probable that this General Circular was also issued separately, and we have reason to believe that this separate Circular, copies of which are still unlocated, was regarded by Morton as the first edition of the Letheon circular. We have also been unable to locate the closely printed four-page circular mentioned by Rice.

The tracts and notices by Morton may thus be listed as follows:

THE WRITINGS OF W. T. G. MORTON

1. The folded, single-page notice headed "To Surgeons and Physicians" was printed sometime prior to November 20, 1846, and since it represents Morton's earliest public statement on the subject we list it first. It is folded once and is intended for mailing without envelope (see figs. 43a and 43b). Two copies have been traced, one in the Massachusetts Historical Society addressed to Dr. J. Mason Warren, the other at the Essex Institute, Salem, Mass., addressed to Dr. Henry Wheatland, Salem, Mass., postmarked "Boston, Nov. 23".

2. Boston Evening Transcript, Nov. 20, 1846, headed "To the Public", stating that he has applied for Letters Patent.

3. Boston Medical and Surgical Journal, Nov. 25, 1846. Notice headed "To Surgeons and Physicians"; on back Advertising Sheet. The text is the same as No. 1 above, but Morton adds in a postscript: "Surgeons and Physicians who may wish to witness this effect of the new agent, are respectfully invited to call at my rooms. In the next No. of the Journal a name for this new operation will be given." There is also a second notice by Morton on this page offering instruction in Dentistry.
Appendix

Circular. Morton’s Letheon

5. 1ST EDITION, 1 PAGE
 Boston, Nov. 26, 1846
 Probably the 1-page sheet headed “General Circular . . . Public Caution” with text identical with that of No. 3 above. No copy found.

6. 2ND EDITION, 4 PAGES
 Boston, Dec. 1846
 Probably the four-page Circular mentioned by Poore and Rice in their biographies of Morton. No copy traced.

7 3RD EDITION, 14 PAGES
 Boston, ? Dec. 1846
 The Circular is now expanded by inclusion of letters and excerpts from journals up to the middle of December. Copies in the Army Medical Library and Treadwell Library of the Massachusetts General Hospital.

8. 4TH EDITION, 42 PAGES
 Boston, Jan. 1847
 This edition of the Circular, now expanded to 42 pages, contains dated excerpts through Dec. 30, 1846. One copy found, in the Library of the College of Physicians, Philadelphia.

9. 5TH EDITION, 88 PAGES
 Boston, May 1847
 This, the final edition of the Circular, which carries the additional title “Voice from Europe”, must have been printed in large numbers since many copies have been preserved. It occurs in wrappers of three colors: yellow, green, and blue.

Morton’s Other Writings on Ether

12. On the loss of the teeth, and the modern way of restoring them, as practised by W. T. G. Morton and Francis Whitman. Boston: Printed by Damrell & Moore, 1847. 32°. 23 pp., 2 illus. [Appendix pp. 18-23 “Great Discovery”, letters and excerpts describing the success of the new anesthetic agent; latest date, Paris, Aug. 16, 1847.]

13. Rapport des administrateurs de l’Hôpital Général de Massachusetts; suivi de l’histoire de la découverte de l’éther; et du mémoire adressé par
The History of Surgical Anesthesia

le Docteur Morton, à l'Académie française. R. H. Dana, Jr., Editeur.
Cambridge: Imprimerie de Metcalf et Compagnie, 1848. 144 pp., 2 ll.

14. On the loss of the teeth, and the modern way of restoring them, as practised by W. T. G. Morton. Second edition of ten thousand copies. Boston: Printed by William A. Hall, 1848. 32°. 2 p.l., 32 pp. [Although 10,000 copies are said to have been printed, only two have been traced, one at the Essex Institute in Salem, Mass., the other at the Army Medical Library. The Appendix which now runs from p. 17 to p. 31 is augmented by a series of quotations headed “Opinions of the Press”. Dr. Whitman, the co-author of the first edition, had died early in 1848.]

17. Remarks on the comparative value of ether and chloroform, with hints upon natural and artificial teeth. Boston: Printed by William A. Hall, 1850. 16°, 2 ll., 48 pp. [The preliminary two leaves consist of an illustration labelled “Morton’s Tooth Manufactory”, followed by half-title, “Morton”; pp. 37-48 are made up of testimonial letters bearing on the virtues of Morton’s artificial teeth. The first pages of text reprint the paper listed above as No. 16 from the Boston Medical and Surgical Journal.]

EDWARD WARREN ON THE LETHEON

Morton had employed as a legal agent one Edward Warren of Palmyra, Maine, who aided him in negotiations for his patent. Warren, who was untrained in medicine and dentistry, collected letters and relevant excerpts from journals in support of the patent claim and issued them periodically in a pamphlet which bore the title, Some Account of the Letheon. The testimonial technique which Morton had used in his Circular Warren also employed, and his Letheon pamphlets contain in consequence a wealth of source material which has an important bearing on the ether controversy. The celebrated letter to Morton from Oliver Wendell Holmes appears in the second issue of the second edition

[182]
Appendix

of Warren’s tract. This in consequence has become one of the
great collector’s items both for those who pursue the literature of
anesthesia and for those who collect the Autocrat. As with
Morton’s Circular, Edward Warren’s tract passed through five
issues but technically there were only three “editions.”

Some Account of the Letheon

19. 1ST EDITION, 38 PAGES Boston, March 1847
Inserted following the title-page is an engraved lithographed portrait of
the first edition contains the portrait.

20. 2ND EDITION, 49 PAGES Boston, April 1847
This, a little-known issue of the Warren pamphlet, contains several letters
not included in the first edition, the latest of which is Dr. George Hay-
ward’s communication read to the Boston Society for Medical Improve-
ment, April 12, 1847. Five copies have been traced.

21. 2ND EDITION, 2ND ISSUE, 2 + 79 PAGES Boston, May 1847
The second issue of the second edition of Warren’s tract contains on page
79 the memorable letter to Morton from Oliver Wendell Holmes, dated
November 21, 1846, in which Holmes proposed the term “anaesthesia” to
describe the state of insensibility produced by ether vapor; and he also
suggested the adjective “anaesthetic”. Eight copies of this issue have been
traced.

22. 3RD EDITION, 1ST ISSUE, 88 PAGES Boston, June 1847
In this edition Warren’s tract has been considerably expanded, with type
completely reset. The Holmes letter appears in the Appendix on pp. 84-85
and much in the way of testimonial material has been added. Copies are
bound in salmon or in blue covers. Twelve copies have been traced.

23. 3RD EDITION, 2ND ISSUE, 90 PAGES Boston, July 1847
This issue is identical with the first issue of the third edition save for the
addition of “Dr. Jacob Bigelow and the Ether Question” on pp. 89-90.
One copy in the original state, inscribed to Dr. John Homans, is in green
covers. Twelve copies have been traced.

1 Osler, W. The first printed documents relating to modern surgical anaesthesia. Proc.

2 Poore, B. P. Historical materials for the biography of W. T. G. Morton, discoverer of
eretherization, with an account of anaesthesia. Washington, 1856.

3 Rice, N. P. Trials of a public benefactor, as illustrated in the discovery of etherization.
New York, 1858.
Index

A. C. E. mixture, 49, 50
Abbot, Gilbert, 27
Abel, A., 61
Abel, John, 10
Abreu, Benjamin, xxx
Abül Bekr Hamidb, Samajún, 104
Academy of Sciences (France), 13
Acetone, 33
Acetylcholine, xvii
Acidosis in anesthesia, xxix, 81, 146
Adams, R. C., 55, 60, 63, 118
Adrenalin, 76
Adrenin, 82
Adsorption, xviii
Aesculapius, 6, 103
Agamede, 4
Agote, Luis, 56, 113
Alcohol, xiii, xvii, xxx, 5, 9, 14, 48, 50, 59, 81
Aliphatic cyclopropyl ethers, 53
Allen, Frederick M., 45, 118
Allen, William, 17, 105
Alles, Gordon, xxvii
Alurate, see Barbital and barbital derivatives
American Association of Anesthetists, 89
American Board of Anesthesiology, 92, 117
American Dental Association, 41
American Medical Association, 34, 36, 43, 69, 92, 118, 173
American Society for Pharmacology and Experimental Therapeutics, xxii
American Society of Anesthetists, xxi, 47, 88, 89, 173
American Society of Heating and Ventilating Engineers, 91
Ammonia, 38
Ampère, 26
Amphetamine, xxvii
Amyl nitrite, 44
Analeptic measures, 81, 147
Anderson, Hamilton, xxvii
Andral, Gabriel, 29
Andrews, Edmund W., 72, 73, 84, 108
Anesthesia Abstracts, 117
Anesthesia Collections, xix-xxi
Anesthesia in war, 146
Anesthésie à la reine, 32
Anesthésie et Analgesie, 117
Anesthesiology, x, xix, 117
Anesthetic apparatus, 83-86
Anesthetic narcotism, 44
Anesthetic tension, 78, 79, 146
Anesthetometer, 79
Animal magnetism, 12, 13
Anoci-association, xvii, 44, 143
Anociation, see Anoci-association
Anrep, Vasily Konstantinovich von, 40, 109
Anticoagulants, 56
Antony and Cleopatra, 11
Arabians, 7
Archer, Harry, 3, 6, 39
Area of swallowing, 78
Area of vomiting, 78
Army, 70
Army General Hospitals, 89
Army Medical Library, ix, xi, xix, xx, 46, 57
Arterial pressure, 88
Artificial respiration, 63, 66
Ascending respiratory paralysis, 78
Asphyxia, xviii, 37, 49, 64, 72, 73, 74, 75
Association for Research in Nervous and Mental Diseases, xvi
Assyrians, 6, 11
Asthma, 15
Atkinson, A. S., 82
Auer, John, 67, 68, 112
Avertin, see Tribromethyl alcohol
Babcock, Myra E., 8
Babcock, Wayne, 43
Bacon, Sir Francis, 3
Bailey, N., 30
Baillie, Matthew, 29
Baillly, 13
Balanced anesthesia, 78, 146
Bamberg Antidotarium, 7
Bancroft, W. D., 72
Barach, A. L., 117
Barbital and Barbital Derivatives, xvii, xxiii, xxviii, xxx, 58, 59, 60, 61, 62, 63, 81, 82, 139-140
Barbiturates, see Barbital and barbital derivatives
Bardet, 59, 114
Barthélemy, 67, 111
Bartlett, Willard, 69, 70
Bay, Jens C., xi
Beattie, John, 59
Becker, 49
Beddoes, Thomas, 17, 21, 83
Beecher, H. K., 86, 87, 117
Beer, 54
Behan, R. J., xv, xvi
Bell, I. R., 52
Bell, Jacob, 107
Bennett, Alexander, 40, 108
Bentley, Y., 23
Benzodrine, see Amphetamine
Benzine, 33
Berkhuijsen, Medical College, 21
Bernard, Clhude, xviii, 39, 71, 72, 73, 82, 108
Bert, Paul, 19, 72, 73
Bert’s apparatus, 75
Bettny, G. T., 17
Bevan, Arthur Dean, 51
Bier, August, 42, 58, 110, 112
Bigelow, 22, 28, 29
Bischoff, Theodore, 55
Black, Constance, 53, 117
Blake, xxx
The History of Surgical Anesthesia

Blood bank, 56
Blood serum, 56
Blood transfusion, 54-56
Blood types, 56
Blundell, James, 55
Boccacio, 8
Bogendorfer, L., 59, 61, 115
Boothby, Walter, 68, 79, 86, 112, 113
Boothby-Cotton sight-feed apparatus, 86
Borderan, 40
Boston Society of Medical Improvement, 29
Botsford, Mary, xxix
Bourne, Wesley, xxix, 43, 76, 80, 81, 82, 115, 117
Bowditch, Henry Pickering, 108
Boyle, H. E. G., 68, 86
Boyle machine, 86
Bradley, 17
Braid, James, 13
Braun, Heinrich, 39, 40, 42, 110
Braxton-Hicks, John, 55
Bredenfeld, Elisabeth, 58, 82, 113
Briffault, Robert, 4
British Army Plastic Unit, 68
British Journal of Anaesthesia, 114
British Medical Association, 74, 114
Brooke, Arthur, 10
Broussais, Francois, 29
Brown, Gilbert, 88
Brown, William E., 51, 114
Brunton, Lauder, 75
Bull, 47
Bullard, O. K., 63
Bullein, William, 9, 104
Bulletin of National Association of Nurse Anesthetists, 116
Bumm, R., 60, 115
Bumpus, 39, 41
Burkhardt, Ludwig, 58, 112
Butylene, 18
Butzengeiger, O., 48, 115
Buxton, 19
Caglieri, Guido, 42, 111
Calciun hydrate, 69
Canadian Medical Association, 51, 115
Cannabis indica, 7
Capillary activity, xviii
Carbon dioxide, xiii, xxix, 6, 14, 19, 21, 69, 86, 132-133
Carbon dioxide absorption, 69-71, 133
Carbon monoxide, 50
Carbonic acid gas, see Carbon dioxide
Cardiac damage, 52
Carlson, H. J., 110
Carnations, 50, 51
Carr, C. Jelleff, 53
Carron oil, 47, 48
Carter, J. B., 51, 114
Cartwright prize, 88
Cathelin, M. F., 90, 111
Cautery, 62
Cerebral cortex, xvii
Cerebral excitement, 37
Charles X of France, 20
Chemical Warfare Service, xxiv
Chen, Mei-Yu, see Mei-Yu Chen
Chinese, 6
Chloral hydrate, 56, 58
Chloroform, xvii, 33, 35, 37, 48, 50, 57, 58, 64, 65, 69, 72, 73, 74, 75, 76, 82, 83, 84, 130-131
Chloroform commission in Paris, 74
Chloroform percentages, 83
Circle filter, 70
Circulatory collapse, 19
Cirumcision, 6
Clarck, Timothy, 54
Clark, Sir James, 35
Clark machine, 85
Clarke, William E., 21, 22, 106
Cleveland Clinic, 79
Cleveland Dental Manufacturing Company, 84
Cleveland Medical Library Association, xi, xix
Coffey, Joseph T., 83, 84, 108, 109
Coal gas, 49
Coburn, 86
Coca, xiii, 39, 40
Cocaine, 39, 40, 41, 42, 43, 82, 136
Codman, E. A., 87, 88, 110
Coga, Arthur, 54
Cold, xviii, 44
Colish, A., xii
College of Physicians and Surgeons, New York City, 88
Collins, K. H., 82
Colloids, 44
Colonic anesthesia, see Rectal anesthesia
Colt, Samuel, 21
Colton, Gardner Q., 23, 24, 83, 108
Compatibility of the blood, 56
Conditioned reflexes, 81
Conduction anesthesia, 41, 43
Conness, Karl A., x, 79, 85, 91, 112, 113, 117
Continuous caudal analgesia, 99, 142
Continuous spinal anesthesia, 90, 141
Convulsions, 97
Cooley, Samuel A., 23
Cooper, Astley, 17, 105
Corneal reflex, 40
Cornell University, 72
Corning, J. Leonard, 41, 42, 44, 109, 110
Cotton, F. J., 68, 79, 112
Cotton, J. H., 51
Cotton-Boothby apparatus, 79
Coupard, 40
Crile, George W., x, xvii, 43, 49, 82, 87, 88, 112
Crocker, William, 50, 112
Crocus metallorum, 54
Index

Crombil, Alexander, 109
Cullen, 90
Cullen, S. C., 62, 89
Cunningham, J. H., 47, 86
Curare, 89, 149
Current Researches in Anesthesia and Analgesia, ix, x, 90, 114
Cushing, Harvey, 43, 87, 88
Cushing Laboratory, 44
Cuvier, Baron, 29
Cyanosis, 66
Cyclopropane, 49, 52, 53, 77, 89, 91, 135
Cyclopropyl methyl ether, 49, 53, 134-135
Cyprome ether, see Cyclopropyl methyl ether
Dale, Sir Henry, 80
Dana, F. Jr., 29
Danis, 113
David, N., xxx
Davy, 50
Davy, Humphry, xiv, 15, 16, 17, 18, 21, 105
Death, B., 47, 54, 55, 74, 76
DeBory, 13
Decameron, 8
De Castello, 56
Decadrymation, xviii
Delirium, xiii, 39
Dementia praecox, xxix
Denis, Jean-Baptiste, 54, 55, 105
Dental operations, Intravenous anesthesia, 63
Dial, see Barbital and barbital derivatives
Di-allyl-barbituric acid, see Barbital and barbital derivatives
Diathermy, 62
Dillon, T. G., 115
Dinitrophenylmorphine, xxviii
Dioneo, 8
Dioscorides, 6, 9, 10, 30, 103
Dittrick, Howard, ix, xxi, 89, 90
Divine right of kings, 5
Divinyl ether, see Divinyl oxide
Divinyl oxide, xviii, xxvi, xxvii, xxviii, xxx, 49, 52, 77, 135
Dogliotti, A. M., 44
Dresser, H., 58, 111
"Drowsy" syrups, 11
Du Bartas, Guillaume de Saluste, 35
Du Bois, R., xviii
Duc de Bordeaux, 54
Ducros, 71
Dufour, 67, 111
Duke of Bourbon, 12
Dumas, Jean Baptiste, 33, 106
Duncan, 33
Duncum, Barbara, 83
Dupuy, Marc, 46
Eckman, James, xii
Edinburgh, Medico-Chirurgical Society of, 33
Edward III, 5
Edwards, W. B., 90, 118
Egyptians, 6, 7
Ehrenfried, Albert, 79
Eichholz, 48
Einhorn, Alfred, 42, 111
Eisenhart, C., 89
Eisenmenger, Victor, 65
Elliotson, John, 13, 29, 106
Elser, Charles A., 68, 112
Elsholtz, Sigismund, 38, 54, 105
Embley, Edward Henry, 75, 76
Emerson, George, xxviii, xxx
Emmerez, 54
Endotracheal anesthesia, 59, 63-69, 144-145
Enzyme chain reactions, xvii
Ephedrine, 81
Epidural anesthesia, 41, 43, 44, 136-137
Epinephrine, 42, 110
Erlanger, Joseph, xvi
Erythroxylin, 39
Esdaile, James, 13, 14, 106
Ether, xiv, xvii, xxv, 3, 9, 18, 25, 27, 29, 31, 32, 33, 35, 36, 37, 45, 46, 47, 48, 50, 53, 57, 58, 69, 71, 79, 80, 82, 83, 84, 87, 89, 128-130, 177-183
Ether frolics, 21, 22
Ether percentages, 78, 79
Ether spray, 45
Ethyl alcohol, see Alcohol
Ethyl bromide, 69
Ethyl chlorate, 110
Ethyl chloride, 45, 69
Ethyl ether, 52, 53, 133
Ethyl-N-Propyl ether, 134
Ethylene, xxv, 18, 49, 50, 52, 53, 86, 133-134
Ethylene dichloride, 49
Ethylene-oxygen anesthesia, 50, 81
Eulenberg, 50
Eunarcon, see Barbital, barbital derivatives
Evans, Herbert, xxvi
Evans, William E., Jr., 53
Everrett, 30
Evipal sodium, see Barbital and barbital derivatives
Evipan, see Barbital and barbital derivatives
Explosiometer, xxx
Explosion hazards, 62
Explosions, xxx, 90, 91
Eye, 40
Eyelid reflex, 78
Eyster, J. A. E., xxiv
Fabrica, 62, 63, 64
Face mask, 66
Faculty of Paris, 13
Failure of respiration, 67, 75
Failure of the circulation, 74
Faraday, Michael, 18, 106
Farr, R. E., 116
Farrington, Benjamin, 64
Fauvel, 40
Federated Societies for Experimental Medicine, xxiii
Fedorow, 58
Feissly, R., 115
Fell, George H., 65, 66
Fell-O'Dwyer apparatus, 65, 67
Fibrillation of the heart, 76
The History of Surgical Anesthesia
Index

Hubbell, A. O., 63
Hugh of Lucca, 7, 8, 104
Hull Botanical Laboratory, 51
Humphry Davy’s “gas” machine, 17
Hunter, 47
Hurd, G. H., 110
Hurwitz, S. W., 113
Hustin, A., 56, 113
Hyderabad commissions, 74, 75
Hydrogen, 15
Hypnotism, 13
Hypodermic, 38, 39, 48
Hypodermic syringe, 38
Hyssop, 6
Hysteria, 15
Ice, 45
Infiltration anesthesia, 42, 43
Inflatable cuff, 64, 65, 70
Inghenous, Johannes, 49, 105
Inhibited nervous system, 81
Inhibitory neurosis, 81
Intermittent anesthesia, 77
Intermittent flow machine, 85
International Anesthesia Research Society, 90
International College of Surgeons, 45
International Congress on Physiology, xxvi
International Medical Congress, 47, 65
International Congress on Physiology, 45
Kartalevskij, 117
Korff, 48, 111
Krantz, John C., Jr., 53, 117
Krawkow, N. P., 58, 111
Kropp, 61
Kuhn, Franz, 67
Kümmell, R., 112
Kummer, 42
Labat, Gaston, 114
Lafargue, 38
Lafayette, 12
Lahey, Frank, 47
Lahey Clinic, 91
Lakeside Hospital, Cleveland, 85
Landsteiner, Karl, 56
Langendorf, 86
Larrey, Baron, 21, 45, 90, 106
Latta, 55, 106
Laughing-gas parties, 21
Lavoisier, 13
Lawrie, Lt. Col. Edward, 74, 75
Leake, Chauncey D., x, xxiii-xxx, 6, 9, 21, 44, 50, 52, 81, 116
Leake, Mrs. Chauncey D., xxv
Leavitt, William, 26
Lemmon, William T., 90, 117
Leopold, Prince, 35
LeRoy, 13
Lethal chamber, 44
Letheon, x, 28, 30, 177-183
Lettuce seed, 8
Levy, A. G., 76, 114
Lewis, Bransford, 42
Lewis, Dean, 49
Lewis, Ivor, 175
Lewisohn, Richard, 56, 113
Lieber, Justus von, 33, 106
Lillie, R., xviii
Linnaeus, 30
Lipoid solubility, xviii
Lister, Lord, 74
Liston, Robert, 29, 107
Liver injury, xxvii
Local anesthesia, 135-136
Local, regional and spinal anesthesia, 37-44, 62
Loevenhart, A. S., xxi, xxiv, xxv, xxix, 82
Loewen, Storm van, 80
Long, Crawford W., xiv, 22, 23, 26, 32, 106
Louis IX, 5
Louisiana State Medical Society, 67
Lower, Richard, 54, 105
Lucas, G. H. W., 52, 72, 115
Luckhardt, Arno B., xx, xxv, 49, 50, 51, 114
Lullius, Raymundus, 9, 104

Kirschner, Martin, 59
Kirstein, Alfred, 68, 110
Kleiman, 6, 21, 47
Klikovich, 109
Knapp, 40
Knight, Lee Irving, 50, 112
Knapp, 40
Knight, T. A., 19
Knoefel, Peter K., xxiii, xxvi, xxx, 52, 82
Koller, Carl, xi, xxii, 40, 109
Korff, 48, 111
Krantz, John C., Jr., 53, 117
Krawkow, N. P., 58, 111
Kropp, 61
Kuhn, Franz, 67
Kümmell, R., 112
Kummer, 42
Labat, Gaston, 114
Lafargue, 38
Lafayette, 12
Lahey, Frank, 47
Lahey Clinic, 91
Lakeside Hospital, Cleveland, 85
Landsteiner, Karl, 56
Langendorf, 86
Larrey, Baron, 21, 45, 90, 106
Latta, 55, 106
Laughing-gas parties, 21
Lavoisier, 13
Lawrie, Lt. Col. Edward, 74, 75
Leake, Chauncey D., x, xxiii-xxx, 6, 9, 21, 44, 50, 52, 81, 116
Leake, Mrs. Chauncey D., xxv
Leavitt, William, 26
Lemmon, William T., 90, 117
Leopold, Prince, 35
LeRoy, 13
Lethal chamber, 44
Letheon, x, 28, 30, 177-183
Lettuce seed, 8
Levy, A. G., 76, 114
Lewis, Bransford, 42
Lewis, Dean, 49
Lewis, Ivor, 175
Lewisohn, Richard, 56, 113
Lieber, Justus von, 33, 106
Lillie, R., xviii
Linnaeus, 30
Lipoid solubility, xviii
Lister, Lord, 74
Liston, Robert, 29, 107
Liver injury, xxvii
Local anesthesia, 135-136
Local, regional and spinal anesthesia, 37-44, 62
Loevenhart, A. S., xxiii, xxiv, xxv, xxix, 82
Loewen, Storm van, 80
Long, Crawford W., xiv, 22, 23, 26, 32, 106
Louis IX, 5
Louisiana State Medical Society, 67
Lower, Richard, 54, 105
Lucas, G. H. W., 52, 72, 115
Luckhardt, Arno B., xx, xxv, 49, 50, 51, 114
Lullius, Raymundus, 9, 104

[189]
The History of Surgical Anesthesia

Lundy, John S., ix, x, xxi, 60, 61, 62, 78, 82, 86, 88, 116, 118
Lundy-Heidbrink kinetometer gas machine, 86
Lundy-Heidbrink model, 86
Lussem, Franz, 50
Lyman, 21
MacAlyane, Eufame, 9
McClendon, Adeline, 23
McClendon, G. L., 23
MacDonald, Joseph, 90
Macewen, William, 65, 119
McGill University, 80, 81
MacIntosh, R. R., xxi
McKesson, E. I., 68, 85, 88, 113, 112
McKesson machine, 85
McMechan, Francis H., xxi, xxix, 89, 90
McMechan, Laurette van Varseveld, xxi, xxix, 89, 90
Magaw, Alice, 11
Magendie, Francois, 45, 71
Magill, I. W., 68, 76, 114, 117
Magnesium sulfate, 48, 58
Maine Medical School, 39
Major, Randolph, xxv, xxvi, 52
Malgaigne, Joseph-Francois, 32
Mandrake, see Mandragora
Mark, 6
Marsh, David, xxvii, xxx
Martin, Mrs. George, 44
Mann, Frank, 79, 114
Mansfield, J. D., 28
Marcellus, 10
Marie Antoinette, 12
Marin, M. G., 59, 115
Maydl, Karel, 65
Mayo, C. H., 50
Mayo, W. J., 50
Mayo Clinic, ix, xi, xii, xxi, 60, 61, 86
Medical Research Council of Great Britain, 61
Meek, Walter J., xxiv, 52
Mei-Yu Chen, xxvi, 52, 116
Meigs, Charles D., 34
Meltzer, S. J., 68, 69, 112
Membrane permeability, xviii
Merck and Company, xxvi, xxvii
Mering, J. von, 111
Mesmer, Franz A., 12, 13, 105
Mesmerism, 27, 29
Methylene bichloride, 44
Methylpropylcarbinol urethane, 58
Meyer, H. H., xvii
Miller, Albert H., 25, 27, 78, 83, 86, 115
Miller, William S., xxi
Miner, John R., xii
Minor surgical operations, 77
Mitchell, Samuel Latham, 15
Mock, Harry, Jr., 45
Mock, Harry E., 45
Mollière, Daniel, 46, 109
Montagna, Mazzeo della, 8
Monte Cassino Codex, 7
Moodie, Roy L., 39
Moore, James, 11, 105
Moreno y Mayz, 40
Morgan, Ben, 71, 86
Morpheus, 38
Morphine, xvii, xxiv, xxv, xxviii, xxix, 38, 39, 40, 71
Morphine sulfate, 48
Morse, Samuel F., 26
Morton, Elizabeth W., 25
Morton, William T. G., xiv, xx, 14, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 71, 83, 107, 177-183
Mousel, L. H., 62
Moutard-Martin, R., 109
Mravlag, Paul, xxii
Muehlfelder, Clarence, xviii, xxv
Mulberry, 8
Müller, 50
Muscular rigidity, 89
Music as an aid to anesthesia, 149
Myrrh, 6
Nakagawa, Koshiro, 59, 114
Napoleon, 21
Narcylen, 114
Narkose und Anästhesie, 115
Nasal intubation, 67
National Research Council, xxix
Nausea, 39, 82
Needle, 38, 42, 90
Neff, W. B., 116
Nembutal, see Barbital and barbital derivatives
Neonatal, see Barbital and barbital derivatives
Neptunyl, 6
Nerve fibers, xvii
Nerve impulses, xvii, 72
Nerves, xiii, xvii, 11, 41, 43, 44, 72, 147
New York Academy of Medicine, 28
New York Society of Anesthetists, 47
Newton, Harlan F., 43
Nicolas of Salerno, 7, 104
Niemann, Albert, 39, 108
Nitric ether, 33
Nitrogen, 15
Nitrous oxide, xiv, 3, 14, 15, 16, 17, 18, 21, 22, 24, 25, 62, 68, 69, 71, 72, 73, 83, 84, 85, 86, 131-132
Nitrous oxide-oxygen anesthesia, 69, 73, 81, 84, 85
Noel, H., 58, 113
Nosworthy, M. D., 88, 89, 116
Novinny, 39
Index

Novocaine (procaine hydrochloride), see Procaine and procaine compounds

Nuffield, Lord, 175
Nunneley, Thomas, 49, 107
Obstetrics, 8, 32, 33, 34, 48, 69, 77, 90
Ockerblad, N. F., 115
Odom, Charles B., 44
O'Dwyer, Joseph, 65, 66
Ohio, 5
Ohio Chemical and Manufacturing Company, 86
Ohio monovalve anesthesia machine, 86, 112
Oldenburg, 54
Olefiant gas, see Ethylene
Olive oil, 48
Olmsted, J. M. D., 72
Opium, xiii, 5, 7, 37, 38, 54
Oral surgery, Intravenous anesthesia in, 63
Ore, Pierre-Cyprien, 56, 57, 58, 108
Orlandi, 87
Osborne, W. A., 74, 104
Oxide of azote, see Nitrous oxide
Oxygen, 14, 15, 19, 47, 50, 61, 62, 63, 68, 69, 71, 72, 73, 84, 85, 86, 91
Pages, Fidel, 44, 114
Pain, xiii, xv, xvi, xviii, xix, xxviii, xxix, xxx, 3, 4, 5, 6, 12, 13, 14, 15, 18, 19, 21, 24, 26, 27, 31, 33, 36, 38, 39, 43, 44, 48
Paracelsus, 9, 104
Paraldehyde, xxx, 58, 59, 82
Paré, Ambroise, 11, 104
Parham, F. W., 67
Parrot, Miss, 25
Patroclus, 5
Payer, E., 111
Pearro, 86
Pearson, Richard, 105
Peck, Charles H., 58, 68
Pentobarbital sodium, see Barbital and barbital derivatives
Pentothal sodium, see Barbital and barbital derivatives
Peoples, S. Anderson, xxvii, xxviii, xxx
People's Hospital, New York City, 47
Pereira, 26
Peridural anesthesia, see Epidural anesthesia
Perls, 59, 115
Pernice, 42
Pernocton, see Barbital, barbital derivatives
Pernoston, see Barbital, barbital derivatives
Pessel, 69
Peter Bent Brigham Hospital, 79
Peters, Charlotte H., 14
Petroleum liquid, 48
Pharmacologic factors, 80-83
Phatak, Nil, xxx
Phenobarbital, see Barbital and barbital derivatives
Phosphoric acid, 81
Physiologic factors, 71-80
Pien Ch'iao, 103
Pike, F. H., 111
Pirogoff, Nikolais Iwanowitch, 45, 46, 107
Plasma, 56
Plato, 30
Pliny, 6, 103
Ploynel, 77
Pneumatic medicine, 15
Poggendorf, 33
Poisoning, 55, 82
Poore, Benjamin P., 178
Pope, Dr. Elijah, 22
Popp, 5, 8, 11, 37
Porta, Giambattista della, 104
Porto, Luigi da, 10
Post, 47
Post-anesthetic care, 82
Potassium phosphate, 81
Potion of the condemned, 6
Pravaz, Charles Gabriel, 38, 107
Pravaz syringe, 38
Premedication, 48, 49, 71, 78, 82
Presbyterian Hospital (Chicago), 51
Presbyterian Hospital (New York), 66
Priestley, Joseph, xx, 14, 49, 105
Princeton University, xxiii, xxv, xxvi, 52
Prinz, 5
Procaine and procaine compounds, xxiii, 42, 44, 58, 90, 137
Propylene, 52
Pulse, 45, 87
Puncture, 44
Puységur, Count Maxime de, 13, 106
Quarterly Supplement of Anesthesia and Analgesia, 90
Quill, 54
Quincke, 41, 42, 110
Quinine alkaloid, 48
Quistorpius, J. B., 30
Radcliffe Infirmary, Oxford, England, xxi
Ragosky, 81
Rainbotham, Francis H., 34
Rawdin, L. S., xxvii, 116
Réclus, 42
Records and statistics, 86-89, 149
Rectal anesthesia, xxix, 45-48, 142-143
Redard, 109
Refrigeration anesthesia, 44, 45, 143-144
Regional anesthesia, 41, 43
Regnault, V., 107
Reiset, J., 107
Respiration, 47
Restoration agents, 81
Reversible coagulation, xviii, 72
Revista Argentina de Anestesia y Analgesia, 117
Reynolds, Lawrence, xx
Rhinology, 40
Rice, Nathan P., 179
Richardson, Sir Benjamin Ward, xxvi, 32, 44, 50
Richter, G. H., 72
The History of Surgical Anesthesia

Riesman, David, 7
Riggs, John M., 24
Riggs' disease, 24
Riva-Rocci, Scipione, 87
Riva-Rocci's blood-pressure apparatus, 87
Robbins, B. H., 117
Robinson, Victor, 33
Romans, 6
Romeo and Juliet, 10, 11
Rosenberg, Paul, 67
Rothenberg, I. M., 47
Rothenberg, Solomon, 47
"Round trip" absorber, 71
Rous, Peyton, 114
Roux, 46
Rovenstine, E. A., 52, 62, 88, 89, 116
Rowbotham, E. S., 68
Royal Academy of France, 29
Royal College of Physicians and Surgeons, 80
Royal College of Surgeons of Edinburgh, 19
Royal College of Surgeons of London, 19, 31
Royal Society, 19, 21, 54, 64
Royal Society of Medicine, 76
Royal Society of South Africa, 64
Royal Victoria Hospital, Montreal, 80
Ruigh, R. L., xxvi, 52
Saez, Antonio, 45
Safety features, 146
Saglia, 40
St. George's Hospital, London, 32
St. Luke's Hospital (Cleveland), 85
Saklad, Meyer, 89
Saline solutions, 55
Sampson, Agnes, 9
Scanzoni, Friedrich W., 34
Scharpff, W., 61, 116
Scheele, Karl W., 14, 105
Schneiderlin, 48
Scherzer, 39
Schleich, Carl Ludwig, 42, 110, 111
Schmerz, 115
Schneiderlin, 48
Schullian, Dorothy M., xi
Schuman, Henry, x, xii, xix
Schwarz, Otto Henry, 69
Schwarz, Otto Henry, Jr., 69
Scopolamine, 58
Scopolamine-morphine, 48, 142
Scrofula, 5
Scythians, 6, 103
Seattle model gas machine, 86
Seelig, M. G., 40
Severs, M. H., 52
Seguin, 98
Semitas, 6, 11
Semmler, xxvi
Sertürner, Friedrich Wilhelm, 38, 105
Sertorio, 45, 104
Shakespeare, 10, 11
Shannon, George E., 53, 117
Shattuck, Samuel G., 56
Shields, Harry J., 43
Shock, xiii, xvii, 59, 44, 45, 55, 82
Shuman, John, xxix
Sicard, M. A., 90, 111
Sigerist, Henry, 7
Sight-feed dropper, 85
Signs of anesthesia, 77, 148
Silliman, 33
Silverman, Milton, xxx
Simpson, Sir James Y., 23, 33, 34, 35, 49, 74, 75, 107
Simpson, R. A., 89
Smith, Edgar F., xx
Smith, J. H., 25
Snow, John, 31, 32, 44, 64, 74, 77, 78, 83, 107, 108
Snow ice, 45
Society of Anaesthetists (London), 110
Sodium allyl secondary butyl thiobarbituric acid, see Barbital and barbital derivatives
Sodium amytal, see Barbital and barbital derivatives
Sodium chloride, 55, 58
Sodium citrate, 56
Sodium ethyl-methyl butyl thiobarbituric acid, see Barbital and barbital derivatives
Sodium ethylate, 44
Sodium hydrate, 69
Sodium isoamyl-ethyl-thio-barbiturate, see Barbital and barbital derivatives
Sodium phosphate, 58, 81
Somnambulism, 13, 14
Somnifen, see Barbital and barbital derivatives
Somniform, 69
Soneryl, see Barbital and barbital derivatives
Soporific draughts, 8
Soporific sponge, 7
Sorrel, 8
Souch neur, Eugène, 33, 106
Souchon, Edmond, 43
Souttar, H. S., 58, 113
Spear, Thomas, 26
Spessa, 39, 108
Sphygmomanometer, 87
Spinal anesthesia, 41, 42, 43, 62, 81, 90, 140-141
Sponge, 7, 8, 83
Squibb, Edward R., 107
Squire, Peter, 107
Stages of anesthesia, 77, 78, 148
Stanton, Madeline, x
Stecher, Robert M., xi
Stecher, R. L., 80, 81
Steinbächel, von, of Graz, 48, 82
Stiles, J. A., 52, 116
Stockman, 21, 106
Stone of Memphis, 6
Stovaine, 49, 137
Striker, Cecil, 116
Stupor, 37
Sturgis, C. G., 54, 55, 56
Sturli, 56
Sudhoff, Karl, 7
Sulfuric acid, 9
Sulfuric ether, see Ether
Sun Yat Sen, xxvi
Surface tension, xvii
Suusruta, 103

[192]
Cognate publications of the Wood Library-Museum (with current prices) include:

REPRINTS OF ANESTHESIA CLASSICS

Faulconer A Jr, Keys TE.
A collection of clinical and scientific papers by more than 150 authors ranging from Andreas Vesalius to Linus Pauling. 2-volume set.
Cost: $130

ENGLISH TRANSLATIONS OF ANESTHESIA CLASSICS

Bernard C.
Lectures on Anaesthetics and on Asphyxia. 1875.
Studies by the founder of experimental medicine.
Cost: $35

WORKS ON THE HISTORY OF ANESTHESIOLOGY

Little DM Jr.
A quarter-century of the author's discourses, reprinted from *Survey of Anesthesiology*.
Cost: $45

Cost: $10

A complete list is obtainable from
Wood Library-Museum of Anesthesiology
520 N. Northwest Highway
Park Ridge IL 60068-2573
E-mail: wlm@ASAhq.org
FAX: 847 825 1692